ON THE DIFFERENTIABILITY POINTS OF A FUNCTION OF TWO REAL VARIABLES ADMITTING PARTIAL DERIVATIVES

J. HOFFMANN-JØRGENSEN

1. Introduction.

Let f be a map from \mathbb{R}^2 into \mathbb{R} . We define the partial derivatives, $D_1(f,x)$ and $D_2(f,x)$, in the usual way:

$$D_j(f,x) = \lim_{h\to 0} \frac{f(x+he_j) - f(x)}{h}$$

where $\{e_1, e_2\}$ is the unit vector basis in \mathbb{R}^2 . We shall say that f is partially differentiable on $A \subseteq \mathbb{R}^2$, if $D_1(f,x)$ and $D_2(f,x)$ exists and are finite for all $x \in A$.

We shall use the term "differentiable" in the sense of Stolz. That is, f is differentiable at x with differential $D \in \mathbb{R}^2$, if

$$\lim_{h\to 0} \frac{|f(x+h)-f(x)-\langle h,D\rangle|}{||h||} = 0$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product in R².

Stepanoff has shown in [3] that if f is continuous on \mathbb{R}^2 and partially differentiable on a continuum K (i.e. a compact connected subset of \mathbb{R}^2) then the Lipshitzian L(f,x) is finite at every point $x \in D$, for some dense subset D of K. Here the Lipshitzian is defined by

$$L(f,x) \,=\, \limsup_{h \to 0} \frac{|f(x+h) - f(x)|}{||h||} \quad \, \forall x \in \mathsf{R}^2 \;.$$

In this note we shall show that, if f is continuous and partially differentiable on a differentiable curve $\Gamma \subseteq \mathbb{R}^2$, then f is differentiable at x for all x in a dense G_{δ} -subset of Γ .

In [3] Stepanoff gives 3 important examples. The first example of Stepanoff is a continuous function f, which is partially differentiable almost everywhere in \mathbb{R}^2 , but nowhere differentiable. Stepanoff's second

Received April 22, 1974.

example is a continuous function f which is partially differentiable on all of R^2 , but the set of differentiability points has Lebesgue measure smaller than any prescribed positive number ε . The last examply of Stepanoff is a continuous function f which is partially differentiable on all of R^2 , so that there exists a continuum K with $\{x \in K \mid L(f,x) = \infty\}$ of second category in K.

2. Differentiability on a curve.

In this section we shall present a proof of the result announced in the introduction, but under essentially weaker conditions. In order to state the theorem we shall need the following definition: If $A \subseteq \mathbb{R}^2$, then $\theta(A)$ is defined to be the set of points $x \in A$, such that there exist $\beta(x) = \beta > 0$ and $\delta(x) = \delta > 0$ with the property

(2.1)
$$\forall z \in b(x,\delta), \exists y \in A \text{ so that } ||y-z|| \le \beta ||z-x|| \text{ and either } p_1(y) = p_1(z) \text{ or } p_2(y) = p_2(z),$$

where $b(x,\delta)$ denotes the closed ball with center at x and radius δ , and p_i is the projection on e_i . Now we can state the main theorem:

THEOREM 2.1. Let f be a map: $R^2 \sim R$ and Γ a subset of R^2 satisfying

- (2.1.1) Γ is a G_{δ} -set,
- (2.1.2) $f(\cdot + ae_i) | \Gamma$ is continuous for all $a \in \mathbb{R}$ and j = 1, 2,
- (2.1.3) f is partially differentiable on Γ ,
- (2.1.4) $\theta(\Gamma)$ contains a G_{δ} -set Γ_{0} which is dense in Γ .

Then the set

$$\Delta = \{x \in \Gamma \mid f \text{ is differentiable at } x\}$$

contains a G_{δ} -set which is dense in Γ .

PROOF. Let $\Gamma_j^+(\varepsilon)$ be the set of $x \in \Gamma$ so that there exists a neighborhood U of x, relatively in Γ , and a $\delta > 0$ so that

$$|\big(f(y+te_j)-f(y)\big)/t-D_j(y)| \ \leqq \ \varepsilon \quad \ \forall \, y \in U, \ \forall \, 0 < t \, \leqq \delta \, .$$

Let $\Gamma_{j}^{-}(\varepsilon)$ be the set of $x \in \Gamma$ so that there exists a neighborhood U of x, relatively to Γ , and a $\delta > 0$ so that

$$|(f(y+te_i)-f(y))/t-D_i(y)| \leq \varepsilon \quad \forall y \in U, \ \forall -\delta \leq t < 0$$

where D_1 and D_2 are the partial derivatives of f in the directions e_1 and e_2 . Then we have:

(2.2) $\Gamma_1^+(\varepsilon)$, $\Gamma_1^-(\varepsilon)$, $\Gamma_2^+(\varepsilon)$ and $\Gamma_2^-(\varepsilon)$ are open and dense relatively in Γ for all $\varepsilon > 0$.

Let us consider $\Gamma_1^+(\varepsilon)$. It is obvious that $\Gamma_1^+(\varepsilon)$ is open relatively in Γ . Since Γ is a G_{δ} -set in \mathbb{R}^2 we can find a complete metric $\varrho(x,y)$ on Γ which generates the topology of Γ . Now suppose that $\Gamma_1^+(\varepsilon)$ is not dense in Γ . Then we can find $x_0 \in \Gamma$ and $0 < r_0 \le 1$ so that

$$B(x_0,r_0)\cap \Gamma_1^+(\varepsilon)=\emptyset$$

where we define

$$B(x,r) = \{ y \in \Gamma \mid \varrho(x,y) \le r \},$$

$$B^{0}(x,r) = \{ y \in \Gamma \mid \varrho(x,y) < r \}$$

for $x \in \Gamma$ and r > 0. Now $x_0 \notin \Gamma_1^+(\varepsilon)$ and $B^0(x_0, r_0)$ is a neighborhood of x_0 , so there exist $0 < t_1 < \frac{1}{2}$ and $x_1 \in B^0(x_0, r_0)$ with

$$|(f(x_1+t_1e_1)-f(x_1))/t_0-D_1(x_1)| > \varepsilon.$$

Then we can find $0 < s_1 < \frac{1}{2}$ with

$$\left| \frac{f(x_1 + t_1 e_1) - f(x_1)}{t_1} - \frac{f(x_1 + s_1 e_1) - f(x_1)}{s_1} \right| > \varepsilon ,$$

since f is partially differentiable at x_1 by (2.1.3). Now by (2.1.2) we can find $0 < r_1 \le \frac{1}{2}$ so that $B(x_1, r_1) \subseteq B(x_0, r_0)$ and

$$\left| \frac{f(x+t_1e_1)-f(x_1)}{t_1} - \frac{f(x+s_1e_1)-f(x)}{s_1} \right| > \varepsilon$$

for all $x \in B(x_1, r_1)$. Continuing in this way we can inductively define $x_n \in \Gamma$, t_n, s_n and r_n in $(0, 2^{-n}]$ so that

(i)
$$B(x_{n+1},r_{n+1}) \subseteq B^0(x_n,r_n) \quad \forall n \ge 0 ,$$

(ii)
$$\left| \frac{f(x+t_n e_1) - f(x)}{t_n} - \frac{f(x+s_n e_1) - f(x)}{s_n} \right| > \varepsilon$$

for all $x \in B(x_n, r_n)$ and all $n \ge 1$.

From (i) it follows that we can find \hat{x} with $\hat{x} \in B(x_n, r_n)$ for all $n \ge 1$, since the metric ρ is complete. Hence by (ii) we have

$$\Big|\frac{f(\hat{x}+t_ne_1)-f(\hat{x})}{t_n}-\frac{f(\hat{x}+s_ne_1)-f(\hat{x})}{s_n}\Big|\,>\,\varepsilon$$

for all $n \ge 1$. Now f is partially differentiable at \hat{x} and $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n = 0$, so for $n \to \infty$ we find

$$|D_1(\hat{x}) - D_1(\hat{x})| \geq \varepsilon,$$

which is impossible. Hence $\Gamma_1^+(\varepsilon)$ is dense in Γ . Similarly one may prove that $\Gamma_1^-(\varepsilon)$, $\Gamma_2^+(\varepsilon)$ and $\Gamma_2^-(\varepsilon)$ are open and dense relatively in Γ , and so (2.2) is proved.

Now let

$$\Gamma(\varepsilon) = \Gamma_1^+(\varepsilon) \cap \Gamma_1^-(\varepsilon) \cap \Gamma_2^+(\varepsilon) \cap \Gamma_2^-(\varepsilon)$$
.

Then we obviously have:

(2.3) $x \in \Gamma(\varepsilon)$ if and only if there exists a $\delta(x) = \delta > 0$ so that for all $y \in \Gamma \cap b(x, \delta)$, all $0 < |t| \le \delta$ and j = 1 or 2,

$$|(f(y+te_j)-f(y))/t-D_j(y)| \leq \varepsilon$$
.

Since Γ is a Baire space it follows from (2.2) that

(2.4) $\Gamma(\varepsilon)$ is open and dense relatively in Γ for all $\varepsilon > 0$.

Now we shall prove:

(2.5) $\forall x \in \Gamma(\varepsilon), \exists \delta > 0 \text{ such that}$

$$|D_i(x) - D_i(y)| \le 3\varepsilon \quad \forall y \in \Gamma \cap b(x, \delta), \quad \forall j = 1, 2.$$

First we choose $\delta_0 > 0$ so that the inequalities in (2.4) are satisfied. Then we choose $0 < \delta \le \delta_0$ so that

$$\begin{split} |f(x)-f(y)| & \leq \frac{1}{2}\varepsilon\delta_0 \;, \\ |f(x+\delta_0e_j)-f(y+\delta_0e_j)| & \leq \frac{1}{2}\varepsilon\delta_0 \end{split}$$

for all $y \in \Gamma \cap b(x, \delta)$ and for j = 1, 2, which is possible by (2.1.2). Then we have for $y \in \Gamma \cap b(x, \delta)$ and for j = 1 or 2:

$$\begin{split} |D_{j}(x) - D_{j}(y)| & \leq \left| D_{j}(x) - \frac{f(x + \delta_{0}e_{j}) - f(x)}{\delta_{0}} \right| + \left| \frac{f(y + \delta_{0}e_{j}) - f(y)}{\delta_{0}} - D_{j}(y) \right| + \\ & + \delta_{0}^{-1} |f(x) - f(y)| + \delta_{0}^{-1} |f(x + \delta_{0}e_{j}) - f(y + \delta_{0}e_{j})| \\ & \leq 3\varepsilon \,, \end{split}$$

and so (2.5) is proved.

Now let Γ_0 be the dense G_{δ} -set from (2.1.4), and put

$$\Gamma_1 = \Gamma_0 \cap \bigcap_{n=1}^{\infty} \Gamma(1/n)$$
.

Then Γ_1 is a G_{δ} -set which is dense in Γ , since Γ is a Baire space and (2.4) holds. We shall now prove that f is differentiable at all points of Γ_1 . So let $x \in \Gamma_1$ and let $\varepsilon > 0$ be given. Since $x \in \theta(\Gamma)$ we can find $\beta > 0$ and $\delta > 0$, so that (2.1) holds.

Now we choose $k \ge 1$ so large that $k \ge \varepsilon^{-1}(2\beta + 5)$. Since $x \in \Gamma(1/k)$, we can find $0 < \delta_1 \le \delta$ so that

(iii)
$$|(f(y+te_j)-f(y))/t-D_j(y)| < 1/k ,$$

(iv)
$$|D_i(x) - D_i(y)| < 3/k$$

for all $y \in \Gamma \cap B(x, \delta_1)$, all $0 < |t| \le \delta_1$, and j = 1, 2. Now let $\delta_2 = (\beta + 1)^{-1} \delta_1$. Then we shall show that

$$(2.6) |f(z)-f(x)-\langle z-x,D(x)\rangle| \leq \varepsilon ||z-x|| \quad \forall z \in B(x,\delta_2).$$

So let $z \in B(x, \delta_2)$, and put r = ||z - x||. Now $||z - x|| = r \le \delta_2 \le \delta$. Hence by (2.1) we can find $y \in \Gamma$ so that $||y - z|| \le \beta r$ and either $p_1(y) = p_1(z)$ or $p_2(y) = p_2(z)$. Let us assume that the first case occurs. Then we put $x' = (p_1(z), p_2(x))$, and we have:

$$\begin{split} z &= y + te_2 &\quad \text{with} \quad |t| = ||y - z|| \leqq \beta r \leqq \delta_1 \;, \\ x' &= y + se_2 &\quad \text{with} \quad |s| = ||x' - y|| \leqq (\beta + 1)r \leqq \delta_1 \;, \\ x' &= x + ue_1 &\quad \text{with} \quad |u| = ||x' - x|| \leqq r \leqq \delta_1 \;. \end{split}$$

So by (iii) and (iv),

$$\begin{split} |f(z)-f(x)-\langle z-x,D(x)\rangle| & \leq |f(z)-f(y)-\langle z-y,D(y)\rangle| + |f(y)-f(x')-\langle y-x',D(y)\rangle| + \\ & + |f(x')-f(x)-\langle x'-x,D(x)\rangle| + |\langle z-x',D(y)-D(x)\rangle| \\ & \leq k^{-1}|t|+k^{-1}|s|+k^{-1}|u|+||z-x'|||D_2(y)-D_2(x)| \\ & \leq k^{-1}(\beta r+(\beta+1)r+r+3r) = k^{-1}(2\beta+5)r \\ & \leq r\varepsilon \;. \end{split}$$

Hence (2.6) is proved, and so f is differentiable at all points of the G_{δ} -set Γ_1 , and Γ_1 is dense in Γ .

PROPOSITION 2.2. Let γ be a differentiable non-constant map from [0,1] into R^2 satisfying:

(2.2.1) There exist an F_{σ} -set $T_0 \subseteq [0,1]$ so that $S_0 \subseteq T_0$ and $T_0 \setminus S_0$ is a Lebesgue-nullset,

where $S_0 = \{t \mid \gamma'(t) = 0\}$. Then the curve $\Gamma = \gamma([0,1])$ satisfies (2.1.1) and (2.1.4) in Theorem 2.1.

REMARK. If γ' only has finitely many discontinuities, then it is easily checked that (2.2.1) holds for $T_0 = S_0$. If γ' only has countably many zeros, then obviously (2.2.1) holds with $T_0 = S_0$.

PROOF. Let

$$\begin{split} S_+ &= \{ t \mid \ 0 < t < 1 \ \ \text{and} \ \ \gamma'(t) \neq 0 \} \; , \\ \Gamma_+ &= \gamma(S_+) \; . \end{split}$$

We shall then show that

$$(2.7) \Gamma_{+} \subseteq \theta(\Gamma) .$$

So let $x_0 = \gamma(t_0)$ for some $t_0 \in S_+$. Then one of the following four cases must occur: (i) $\gamma_1'(t_0) > 0$, (ii) $\gamma_1'(t_0) < 0$, (iii) $\gamma_2'(t_0) > 0$, or (iv) $\gamma_2'(t_0) < 0$. If the first case occurs we can find $t_0 > 0$ so that $[t_0 - t_0, t_0 + t_0] \subseteq [0, 1]$ and

$$\begin{array}{lll} \gamma_1(t_0+r) - \gamma_1(t_0) \, \geq \, ar & \forall \, 0 \leq r \leq r_0 \, , \\ \gamma_1(t_0+r) - \gamma_1(t_0) \, \leq \, ar & \forall \, -r_0 \leq r \leq 0 \, , \\ |\gamma_2(t_0+r) - \gamma_2(t_0)| \, \leq \, A \, |r| & \forall \, -r_0 \leq r \leq r_0 \, , \end{array}$$

where $a = \frac{1}{2}\gamma_1'(t_0)$ and $A = 1 + |\gamma_2'(t_0)|$. Let $\beta = a^{-1}A + 1$ and $\delta = ar_0$. If $z \in B(x_0, \delta)$ we have

$$\gamma_1(t_0-r_0) \leq p_1(x_0)-ar_0 \leq p_1(z) \leq p_1(x_0)+ar_0 \leq \gamma_1(t_0+r_0)$$
.

So there exist r_1 with $|r_1| \le r_0$ and $p_1(z) = \gamma_1(t_0 + r_1)$. Let $y = \gamma(t_0 + r_1)$. Then $y \in \Gamma$ and $p_1(y) = p_1(z)$. Moreover,

$$\begin{split} ||y-z|| &= |p_2(y)-p_2(z)| \, \leq \, |p_2(y)-p_2(x_0)| + |p_2(x_0)-p_2(z)| \\ &\leq \, ||x_0-z|| + |\gamma_2(t_0+r)-\gamma_2(t_0)| \\ &\leq \, ||x_0-z|| + A\,|r_1| \\ &\leq \, ||x_0-z|| + a^{-1}A\,|\gamma_1(t_0+r_1)-\gamma_1(t_0)| \\ &\leq \, \beta ||x_0-z|| \; . \end{split}$$

This shows that $x_0 \in \theta(\Gamma)$, and since the three remaining cases may be proved similarly, we have proved (2.7).

We may of course assume that $0 \in T_0$ and $1 \in T_0$. Then $T_0 \cup S_+ = [0,1]$, and so $\Gamma_0 \cup \Gamma_+ = \Gamma$ where $\Gamma_0 = \gamma(T_0)$. Moreover, Γ_0 is an F_σ -set, since T_0 is σ -compact. By Theorem 3.2.3 in [1] we have

$$\int_{T_0} ||\gamma'(t)|| dt = \int_{\mathbb{R}^2} \# \{ \gamma^{-1}(y) \cap T_0 \} H^1(dy) ,$$

where H^1 is the 1-dimensional Hausdorff measure in R^2 . Now the left hand side is 0 and

$$\#\left\{\gamma^{-1}(y)\cap T_0\right\} \, \geqq \, \, 1 \quad \ \forall \, y \in \varGamma_0 \; .$$

So we find that $H^1(\Gamma_0) = 0$. Moreover, Γ is connected and locally connected and contains at least 2 points, since γ is continuous and non-constant. Hence, if U is open relatively in Γ and $U \neq \emptyset$, then U contains a connected set with at least 2 points. So by Corollary 2.10.12 in [1] we have

$$H^1(U) > 0$$

for all non empty sets U which are relatively open in Γ . This implies that the interior of Γ_0 relatively in Γ is empty. Hence $\Gamma_1 = \Gamma \setminus \Gamma_0$ is a G_{δ} -set which is dense in Γ (note that Γ is compact and so a fortiori a G_{δ} -set), and $\Gamma_1 \subseteq \Gamma_+ \subseteq \theta(\Gamma)$. So (2.1.1) and (2.1.4) holds.

3. Differentiability along a curve.

In this section we shall prove a result supplementary to the result in section 2. The result is based on the following simple lemma:

LEMMA 3.1. Let f be a map from R^2 in R whose partial derivatives $D_1(f,x_0)$ and $D_2(f,x_0)$ exist at the point x_0 . If one of the partial derivatives exists and is bounded in the neighborhood of x_0 , then the Lipshitzian $L(f,x_0)$ of f is finite at x_0 .

PROOF. Suppose that $|D_1(f,x)| \leq M$ for all $x \in B(x_0,\delta)$, and suppose that $\delta > 0$ is chosen so small that

$$|f(x_0 + h_2 e_2) - f(x_0)| \le K|h_2| \quad \forall |h_2| \le \delta$$

where $K = |D_2(f, x_0)| + 1$. Then we have for all $h = (h_1, h_2) \in B(x_0, \delta)$, by the Mean Value Theorem:

$$|f(x_0+h)-f(x_0)| \leq |f(x_0+h_1e_1+h_2e_2)-f(x_0+h_2e_2)| + |f(x_0+h_2e_2)-f(x_0)|$$

$$\leq |h_1||D_1(f,x_0+\theta h_1e_1+h_2e_2)| + K|h_2|$$

where $0 < \theta < 1$. So we find $L(f, x_0) \leq K + M$.

THEOREM 3.2. Let γ be a map from [0,1] into R^2 which is differentiable at almost all points in [0,1]. Suppose that f maps R^2 into R so that:

- (3.2.1) For almost all points $t \in [0,1]$ the partial derivatives, $D_1(f,\gamma(t))$ and $D_2(f,\gamma(t))$, exists at the point $\gamma(t)$.
- (3.2.2) For almost all points $t \in [0,1]$, the one of the partial derivatives of f exists and is bounded in a neighborhood of $\gamma(t)$.

Then $f \circ \gamma$ is differentiable almost everywhere.

PROOF. From Lemma 3.1 it follows that there exists a nullset $N \subseteq [0,1]$ so that

$$L(f,\gamma(t)) < \infty \quad \forall t \notin N ,$$

 $L(\gamma,t) < \infty \quad \forall t \notin N .$

Let $g = f \circ \gamma$ and let $t \in [0,1] \setminus N$. Then there exists a $\delta > 0$ so that

$$|f(\gamma(t)+h)-f(\gamma(t))| \leq K||h|| \quad \forall ||h|| \leq \delta$$

where $K = L(f, \gamma(t)) + 1$. Then we choose r > 0 so that

$$||\gamma(t+s)-\gamma(t)|| \leq M|s| \quad \forall |s| \leq r$$

where $M = L(\gamma, t) + 1$. We may of course assume that $Mr \le \delta$, and so for $|s| \le r$,

$$|g(t+s)-g(t)| \leq |K||\gamma(t+s)-\gamma(s)|| \leq |KM|s|.$$

Hence $L(g,t) < \infty$ for almost all t, and so g is differentiable for almost all t by Denjoy's theorem (see Theorem (4.2) p. 270 in [2]).

REFERENCES

- H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin · Heidelberg · New York, 1969.
- 2. S. Saks, Theory of the Integral, 2nd ed., Hafner Publ. Co., New York, 1937.
- M. W. Stepanoff, Sur les conditions de l'existence de la differentiale totale, Rec. Math. Soc. Math. Moscow (= Mat. Sb.) 32 (1925), 511-526.

UNIVERSITY OF AARHUS, DENMARK