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ON THE DIFFERENTIABILITY POINTS
OF A FUNCTION OF TWO REAL VARIABLES
ADMITTING PARTIAL DERIVATIVES

J. HOFFMANN-JORGENSEN

1. Introduction.

Let f be a map from R? into R. We define the partial derivatives,
Dy(f,x) and Dy(f,z), in the usual way:

D(f,2) = lim, D)

where {e;,e,} is the unit vector basis in R2. We shall say that f is partially
differentiable on A < R?, if D,(f,x) and D,(f,x) exists and are finite for
all ze 4.

We shall use the term ‘‘differentiable’” in the sense of Stolz. That is,
[ is differentiable at x with differential D € R2, if

f(@+h)~f@)~ B DY| _
I

where (-, - denotes the inner product in R2.

Stepanoff has shown in [3] that if f is continuous on R2? and partially
differentiable on a continuum K (i.e. a compact connected subset of R2)
then the Lipshitzian L(f,) is finite at every point x € D, for some dense
subset D of K. Here the Lipshitzian is defined by

L(f,x) = limsup,_,, I—&-F—;%H:&)—l Yz € R2,

]‘imh—bo 0

In this note we shall show that, if f is continuous and partially differen-
tiable on a differentiable curve I'c R?, then f is differentiable at x for
all z in a dense G,-subset of I

In [3] Stepanoff gives 3 important examples. The first example of
Stepanoff is a continuous function f, which is partially differentiable
almost everywhere in R2, but nowhere differentiable. Stepanoff’s second
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example is a continuous function f which is partially differentiable on
all of R% but the set of differentiability points has Lebesgue measure
smaller than any prescribed positive number ¢. The last examply of
Stepanoff is a continuous function f which is partially differentiable on
all of R% so that there exists a continuum K with {z € K | L(f,z) = o}
of second category in K.

2. Differentiability on a curve.

In this section we shall present a proof of the result announced in the
introduction, but under essentially weaker conditions. In order to state
the theorem we shall need the following definition: If 4 < R?, then 6(A4)
is defined to be the set of points x € 4, such that there exist f(x)=>0
and d(x)=4> 0 with the property

(2.1) Vzeb(x,0), Iy € A so that ||y —z|| < p|z—=| and either
D1(Y) =P1(2) or Po(y) =pa(2),

where b(x,d) denotes the closed ball with center at # and radius 8, and
p; is the projection on e;. Now we can state the main theorem:

THEOREM 2.1. Let f be a map: R2 ~ R and I' a subset of R? satisfying

(2.1.1) I'1s a Gy-set,

(2.1.2) f(- +ae;)|I" is continuous for all a € R and j=1,2,
(2.1.3) f is partially differentiable on I',

(2.1.4) O(I') contains a Gy-set I'y which 18 dense in I

Then the set
A = {x e I'| fis differentiable at x}

contains a G,-set which is dense in I

Proor. Let I'j*(¢) be the set of x € I' so that there exists a neigh-
borhood U of z, relatively in I', and a 6> 0 so that

(fly+te) —f@)t—Dyly)| S e VyeU, VO<t<4.

Let I';~(¢) be the set of « € I" so that there exists a neighborhood U of z,
relatively to I', and a 6> 0 so that

(fly+te)—fW)t—Dyy) < ¢ VyeU, V-85t<0,

where D, and D, are the partial derivatives of f in the directions e,
and e,. Then we have:
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(2.2) IyH(e), I'y~(e), I'yt(e) and I',~(¢) are open and dense relatively in
I' for all ¢>0.

Let us consider I'y*(¢). It is obvious that I';*(¢) is open relatively in I
Since I"is a Gy-set in R? we can find a complete metric g(z,y) on I" which
generates the topology of I'. Now suppose that I';*(¢) is not dense in I
Then we can find x, e I’ and 0<r,<1 so that

B(xy,re) N I't*(e) = @
where we define

B(z,r) = {yeI'| olx,y)=r},
BO(IIZ,’)‘) = {yEPl Q(x,?/)<"}

for x € I'and r > 0. Now x,, ¢ I';*(¢) and B(x,,r,) is a neighborhood of x,,
so there exist 0<#, <} and x, € B%x,,r,) with

(f(wy+t161) = f (1)) [to — Dy(xy)| > €.
Then we can find 0< s, <} with

\f(xl +te;) = f@y) _ f@y+8.8)) —f(y)

t %

> ¢,

since f is partially differentiable at z, by (2.1.3). Now by (2.1.2) we can
find 0 <7, <} so that B(x,,r,) < B(x,,7,) and

‘f(x +te,) —f (@) _ f(@+38.8)) —f(2)

h 4

>

for all x e B(x,,r,). Continuing in this way we can inductively define
z,el,t,s, and r, in (0,2-"] so that

(i) B(Zn+1,7'n+1) = Bo(xnv’rn) Yn 2 0 ’
(i) fle+ tn:l) =fl@)  fle+ 8n:1) —f@) .,

for allx € B(z,,r,) and alln > 1.

From (i) it follows that we can find 2 with 2 € B(x,,r,) for all n21,
since the metric g is complete. Hence by (ii) we have

f(@"'tnel)'—f(@ _f(@"'snel)—f(el > g

ty 8,
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for all n=1. Now f is partially differentiable at 2 and lim
lim,,_, s,=0, so for n > o we find

]Dl(@)“Dﬁ@)I 2 €,

n->cobn =

which is impossible. Hence I';*(¢) is dense in I. Similarly one may prove
that I',~(¢), I'yt(e) and I'y~(¢) are open and dense relatively in I', and so
(2.2) is proved.
Now let
I'(e) = I'n*(e) n I'y~(e) N Iyt(e) N I'y~(e) .

Then we obviously have:

(2.3) zel'(e) if and only if there exists a d(x)=0>0 so that for all
yeI'nb(x,6), all 0<|t|<d and j=1 or 2,

(F(y +te;) —f@))fi—Dy(y)| = &
Since I' is a Baire space it follows from (2.2) that
(2.4) I'(¢) is open and dense relatively in I” for all £> 0.
Now we shall prove:
(2.5) VxzelI(e),I6>0 such that
|Dy(x)—Dy(y)| < 3¢ VYyel'nb(xd), Vj=12.

First we choose d,> 0 so that the inequalities in (2.4) are satisfied. Then
we choose 0<d =4, so that

If@)=f)| = 3d,,
|f(@+doe;) —f(y +dee;)| = by

for all y e I'nb(x,6) and for j=1,2, which is possible by (2.1.2). Then
we have for y € I'nb(x,d) and for j=1 or 2:

J(@+8e) —f ()

Soe.)—
D@~ D)l | D) LEXXDTIE| JUTWNZTG_py )
0 0
+ 80721 f (@) —f ()| 4 8072 | f (2 + Foes) — f(y + S4e;)|
=< 3¢,

and so (2.5) is proved.
Now let I'y be the dense G,-set from (2.1.4), and put

Iy =Tyn N2, I(1n).
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Then I is a G-set which is dense in I, since I" is a Baire space and (2.4)
holds. We shall now prove that f is differentiable at all points of I7.
So let x € I'; and let ¢> 0 be given. Since x € 6(I") we can find §>0 and
6> 0, so that (2.1) holds.

Now we choose k=1 so large that k2=¢1(28+5). Since z € I'(1/k),
we can find 0<d; <4d so that

(iii) (f(y+1te;) = f)[t—Dy(y)| < 1]k,
(iv) |Dj(x)—Dy(y)| < 3k

for all y e I'nB(x,6,), all 0< |t|<4,, and j=1,2. Now let d,=(8+1)-1,.
Then we shall show that

(2.6) /() —f(@)— (-, D@)| < ele—all VzeB,dy).

So let z € B(z,d,), and put r=|z—z|. Now |z—z||=r=<6d,=J. Hence by
(2.1) we can find y e I" so that |ly—z| <fr and either p,(y)=p,(z) or
Po(y) =pa(2). Let us assume that the first case occurs. Then we put
x' =(p,(2), py(x)), and we have:

2= y+te, with lt|=|y—z|Spr=é,,

’

#' = y+se; with [s|=[z"—y||=(B+1)r=d,,

' = x+ue, with |u|=|' —=z||sr=4;.

So by (iii) and (iv),
1f (2) — f () — {z— 2, D(x))]|

|f(2)=f(y)— 2=y, DY+ |f () - f(@') - y—=", D(y))| +
+1f(@") = f (@) — (&’ — 2, D(@))| + {2 — &', D(y) — D(x))|

IA

S Bt + B sl + Bt ul + [l — 27| | Da(y) — D)
S EYBr+(B+1)r+r+3r) = k(284 5)r
< re.

Hence (2.6) is proved, and so f is differentiable at all points of the G,-set
I';, and I is dense in I

ProrosITION 2.2. Let y be a differentiable non-constant map from [0,1]
into R2 satisfying:
(2.2.1) There exist an F,-set Ty<[0,1] so that SocTy and Ty\ 8, is a
Lebesgue-nullset,

where Sy={t | y'(t)=0}. Then the curve I'=y([0,1]) satisfies (2.1.1) and
(2.1.4) ¢n Theorem 2.1.
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Remark. If o' only has finitely many discontinuities, then it is easily
checked that (2.2.1) holds for 7'y=S,. If ' only has countably many
zeros, then obviously (2.2.1) holds with 7Ty=S,.

Proor. Let
8, ={t| 0<t<1 and 9'()+0},
ry=y8,).
We shall then show that
(2.7) Ir.com.

So let xy=7y(t,) for some {,€S,. Then one of the following four cases
must ocour: (i) ¥,'(tg) > 0, (i) 7y'(to) <0, (iii) 75'(t) > 0, or (iv) 7¢'(t) <O.
If the first case occurs we can find r,> 0 so that [f,—r,,t,+7,] < [0,1] and
yilto+7) —v1llo) 2 ar YOsr=sr,,
Yalto+7)—71(to) < @ V-ry=rs0,
[Palto+7) —yalte)l = Al’"| V—rysr=r,,
where a=1y,'(t,) and A=1+|y,'(t,)|. Let f=a14+1 and d=ar,. If
z € B(x,,0) we have

Y1lto—1o) S Py(@g) —ary S py(2) S Py(@p) +ary S y1(to+70) -
So there exist r; with |ry|<r, and p,(2) =p,(to+71). Let y=yp(ty+1y).
Then y € I' and p,(y) = p,(2). Moreover,
[D2(y) — Da(2)| S |P2(y) — Pa(Zo)| + | Da(w0) — Pa(2)]
Il — 2l| + [ a(to + 7) — ya(to)|
llrg — 2| + Al
llzo —2l| +a=1Ayy(t + 1) — y1(to)]
Blizo—2| -

This shows that z, € 6(I"), and since the three remaining cases may be
proved similarly, we have proved (2.7).

lly —=ll

A IA A IA I

We may of course assume that 0 € T, and 1 € T,,. Then T,u S, =[0,1],
and so I'yuI', =TI where I'y=y(T,). Moreover, Iy is an F -set, since T
is o-compact. By Theorem 3.2.3 in [1] we have

Szolly ()l dt = §$pa # (¥ )N To}H (dy) ,

where H! is the 1-dimensional Hausdorff measure in R2, Now the left hand
side is 0 and

#{yy)nTe} 21 Vyel,.
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So we find that H(I',) = 0. Moreover, I" is connected and locally connected
and contains at least 2 points, since y is continuous and non-constant.
Hence, if U is open relatively in I"and U + @, then U contains a connected
set with at least 2 points. So by Corollary 2.10.12 in [1] we have

HYU) > 0

for all non empty sets U which are relatively open in I'. This implies
that the interior of Iy relatively in I' is empty. Hence I';=I'\T} is a
Gs-set which is dense in I' (note that I" is compact and so a fortiori a
Gs-set), and INcI', < 0(I'). So (2.1.1) and (2.1.4) holds.

3. Differentiability along a curve.

In this section we shall prove a result supplementary to the result in
section 2. The result is based on the following simple lemma:

Lemma 3.1. Let f be a map from R2 in R whose partial derivatives Dy(f, x,)
and Dy(f,x,) exist at the point x,. If one of the partial derivatives exists and
18 bounded in the neighborhood of x,, then the Lipshitzian L(f,x,) of f is
finite at x,.

Proor. Suppose that |D,(f,x)|<M for all x € B(x,5), and suppose
that § >0 is chosen so small that
|f (@ +Poes) —f(@o)| = Klhg| Vhy| <6,

where K = |Dy(f,%,)| + 1. Then we have for all » = (hy,k,) €B(x,,d), by the
Mean Value Theorem:

If (2o +h) = f(2o)] S |f(2o+ Pty +Poges) —f (2o + haes)| + | f (% + haea) — F (%,)]
£ |hy| |Dy(f, 2o+ Ohsey + hoes)| + K | By

where 0< 0 < 1. So we find L(f,z,) < K+ M.

THEOREM 3.2. Let y be a map from [0,1] into R? which is differentiable
at almost all points in [0,1]. Suppose that f maps R® info R so that:

(3.2.1) For almost all points t € [0,1] the partial derivatives, Dy(f,y(t)) and
Dy(f,y(t)), exists at the point y(t).

(3.2.2) For almost all points t € [0,1], the one of the partial derivatives of f
exists and is bounded in a neighborhood of y(t).

Then foy is differentiable almost everywhere.
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Proor. From Lemma 3.1 it follows that there exists a nullset
Nc[0,1] so that
L(f,yt)) < o Vt§N,
L(y,t) < oo VYi¢ N.

Let g=foy and let ¢ € [0,1]\ N. Then there exists a >0 so that
If(y(®)+R)—f(y®)| = K|Rll VIAl<d,
where K =L(f,y(t))+1. Then we choose >0 so that
y@+s)—y@)l = Mis| Vis|=r,

where M = L(y,t)+1. We may of course assume that Mr <4, and so for
ls| =1,
lgt+8)—g(®)] = Klly(t+8)—y(s)| = KM|s|.

Hence L(g,t) < co for almost all ¢, and so g is differentiable for almost all
¢t by Denjoy’s theorem (see Theorem (4.2) p. 270 in [2]).
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