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EQUATIONAL BASES FOR LATTICE THEORIES

RALPH McKENZIE

This paper is based on the systematic treatment of equational logic in
Tarski [7]. The results obtained solve some fundamental problems con-
cerning systems of axioms for equational theories of lattices, problems
that were formulated in [7] for equational theories of arbitrary finitary
algebras.

The theories we discuss are defined in a formal system of equational
logic with primitive symbols as follows: an equality symbol, =; a de-
numerably infinite (ordered) set of variables vg,vy,. .., represented for
convenience by small latin letters z, ¥, 2, . .. (with or without subscripts);
and two binary operation symbols, 4 and .. Loosely speaking, the for-
mal system is a certain fragment of first order logic in which the only
admitted formulas are equations, treated as universal sentences. Within
this framework, theories commonly arise in two ways. Each algebra 4
with two binary operations corresponding to < and « determines a
theory @A, the equational theory of A, defined as the set of all equa-
tions o=17 which are valid in A4 (for all values of the variables). Each
set of equations 2 determines a theory @[Z], defined as consisting of all
equations which can be derived from X and the tautologous equations,
=7, by repeated applications of the operations of substitution and re-
placement of equals by equals. A set @ of equations is called an (equa-
tional) theory if ©@=0OA for some algebra A or, what is known to be
equivalent, if ©®=0[X] for some set of equations X. Such a set X is
called an (equational) base for @, or for 4.

Lattices are defined to be algebras satisfying the two equations
x=x+(x+y), x=2x=4z+y, and the commutative and the associative law
for each operation. The equational theories of lattices — or more briefly,
lattice theories — are the theories containing these six equations. Thus
the smallest lattice theory is the theory A, which has a base the set of
lattice axioms; the largest is, of course, 2, based on the single equation
x=y.
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It was shown by Padmanabhan [5] that every finitely based lattice
theory has a base of two equations. In § 1 we show that A has a base
consisting of one equation — i.e. is one-based. It turns out that besides
A and £ no other lattice theory is one based. We note that Tarski has
proved a theorem [7; Thm. 8] from which it follows that if the lattice
theory O is finitely based, then the set of cardinalities of the independent
(i.e. minimal) bases of @ coincides with an interval [»,w). If ®=A or Q
we have »=1; otherwise x=2. The results of this section are extended
to apply to arbitrary theories in which certain operations much weaker
than the lattice operations can be defined.

In § 2 we prove that every finite lattice has a finite base of equations.
(Schiitzenberger [6] asserted as much, but he did not indicate a proof
and his statement appears to have gone unnoticed.) This result is valid
for every finite algebra (with a finite number of basic operations) in
which the operations of a lattice are definable.

The final section of this paper contains some examples, the most impor-
tant being a set of equations I" which is infinite, and independent relative
to A. In other words, for each y € I' we have that y ¢ @[Au(I'—{y})].
This construction yields immediately two interesting corollaries: There
are 2% lattice theories; there is a mon finitely based lattice theory (e.g.
O[AUT™]). These results were proved by Baker [1], independently of this
author, but his method was less elementary. In conclusion, we have a
simple planar diagram (Figure 2) describing a lattice which has no finite
base.

In addition to standard set-theoretic terminology, some special nota-
tions and abbreviations referring to equations or equational theories will
be needed. For example, given a finite set of equations X'={e,,...,¢,},
O[] may be written O[s,y,...,s,]. We denote the equation c=¢e7 by
the expression o<t. Often we write o ~g7 to indicate that an equation
o=t belongs to the theory @, and o<,7 to indicate that c<7€06.
Thus ~g is an equivalence relation; and if ©®=4, then <, is a quasi
partial ordering — reflexive and transitive on the set of terms — and ~
is the equivalence relation derived from it: o ~4 7 if and only if both o <57
and 7<g40.

Given a non-void, finite set of terms 7, 3 T will designate a term »
having the property: for each term g, »<,0 if and only if v<,0 for
every 7 € T. Obviously, any two terms with this property are A-equiv-
alent; we can take for » any term constructed from all elements of 7'
using only 4. Similarly, a product of T is designated by ITT.

We shall represent the set of all variables which occur in a term o,
or in an equation ¢, by V(o) or V(e), respectively. If V(o)< {x,,...,2,},
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¢ may be written as o(x,,...,2,). Then o(v,,. .., »,) designates the term
derived from o by substituting for each variable x,, everywhere it occurs
in g, the term »,. In using this notation we assume, of course, that the
sequence z,,...,r, contains no repetitions. In each algebra 4, r=
¥y, - ., Y,) gives rise to a x-place operation 74, defined in an obvious
fashion. Actually, many operations are defined by a given term, but,
having written 7 as (yy,...,y,), & definite operation is specified; the
context will thus determine what operation is referred to by 4.

Notions pertaining to lattices and used without comment, e.g. “homo-
morphism”, “subdirectly irreducible lattice’” and “diagram of a lattice”,
are well known; consult [2].

1. One-based lattice theories.

We first show that, with the exception of 2 and (possibly) A, there are
no one-based lattice theories.

Assume that @ is a one-based theory, say @=0[¢c], and that A <O
while ©@+2. Obviously, one side of ¢ is a solitary variable; the equa-
tion x=z+z could not be derived from it otherwise. Assume therefore
that ¢ has the form x=7. Then we proceed to construct terms 7y, 7; by
replacing, everywhere in 7, each of its variables other than = by [TV (e),
or > V(e) respectively. Now it is clear that 7,<,7<,7;; and as the
equations x=7, and x=1, are directly derivable form ¢, we easily con-
clude that these two equations, combined with A, form a base for O.

As regards 7, it is obvious that either 7y~ , « or 7y~ IT V(¢) (since 7,
is constructed from these two terms and [] V(¢)<,x). Even the latter
case requires that x=1, € 4, or equivalently V(e)= {x} —x=y, would be
derivable from Au{x=7,} otherwise (forcing @=20). Thus z=7,€ 4,
similarly x=17, € 4; and consequently &=/, which is the desired result.

As mentioned above A is, in fact, one-based. The argument for Theo-
rem 1.1, which proves this, depends on the following simple observation:

I) If 6,6,,...,4, is a system of functions mapping a set Y into itself,
then all functions of the system are permutations of Y if and only if
the function

GooGio... 0@, 0G0@, 0@, 1o0...0G,

is a permutation.

Aided by this observation, we obtain a proof of Theorem 1.1 that is
algebraic and short; although the resulting equation to characterize
lattices (equation A below) is so long, containing over three hundred
thousand symbols, that we can only represent it in an abbreviated form.
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This leaves open the problem of finding a really elegant equation to
characterize lattices.

For the proof we set down a system of four equations:

Lot x=adye(xez),

A = ze(y+(v+2)),

Ayt X = (yexepzez)dw,

Ag: 2 = [(y+a)s(w42)]ox;
and one further equation less easy to express. Let us denote by 7(x,y,z)
the term xey4(yez4z+2); and by o,(z,y,2), for 0<x%<3, the term on
the right side of the equality symbol in equation 4,. Then for any four
terms v, v,, vy, ¥3 We put

Pyvy...v3 = (v, v, v9), Pivg...v3 = T(¥g, vy, ¥1);

and for 0<x»<3 we put

P, ovy. .. vs = 1(0,(vg, ¥1, ¥5), ¥3, %) -
With these symbols, the required equation can be written as
A: x=PyP,... PP,P,P,...Pyxx,...2.

We can also say that 1 is the equation x=z,,, with the term n,, formed
by applying Py, P;,... in the order indicated to construct consecutively

7y = Pyxx,xss, 7,=Pmet ZsZe, - ..
and eventually s,q=Pg%s %3533
LeEMMA. O[2,4;,45,45]=A.
THEOREM 1.1. O[1]=A4.

Proor orF THE LEMMA. Setting @ = O[1,,1,1,,1;], we have to show
that @=A4. It is obvious that each of the equations 4,,...,4; can be
derived from the lattice axioms, whence ® <. Conversely, it must be
shown that the lattice axioms belong to ®. It simplifies matters to note
that O is self-dual: if an equation ¢ belongs to @, the dual equation,
formed by exchanging - and ., will also belong to ©; this because the
dual of each axiom of © belongs to 0.

Substituting the term y«=(x4z) for z, and (y4=z)«(z42) for y, in A,
and applying 2, and 45, we have that

(1) x ~o x4z, and (therefore) x ~g xex.

Substituting on the one hand x+-z for y, on the other x for zin 4, we have
by (1) and by duality that
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(2) z ~gxe(z42), =« ~e Z*(y+2),
and
T ~g Xz, T ~gafyex.

From (2) we infer
(x2)x ~g (T2) e (242) ~g 242

and hence (x+42z)42x ~g x+42. Thus, by replacing y by x4z in 1, and
applying (1), we obtain

(3) T ~g (xfz)ex;

which leads rather shortly to the commutative laws:

(4) x4y ~e Y4z, and dua]ly TolY ~g Yok .
In fact, by (2), (3) and 4,,

zty ~o [y (z+y)+(@+y) 2]+ (24y) ~o (Y+2)+ (@+y);
which, combined with (2), (3), gives

(y+2)+(z4y) ~o (x4y)*(y+2) ~o y+2;

and we easily obtain (4) from this by interchanging # and y and com-
paring the resulting formula with the original.
The proof is concluded by deriving the associative laws:

(5) T (Y+2) ~o (Fy)+2, xe(yez) ~g (oY) 2.

Observe that for three terms, y, @q, @1, if ¥ @o~e o and e, ~o ¢, then
also y+(po ¢1) ~o Pot@1; this follows from (3), since by (4) and 1,

1 ~e (PosxFrop)F 1 ~o (Poto))+2 -

We easily conclude from this fact — by taking y =2+ (y=2) and deriving
1@ ~g @ for each one of the terms p=uw,y,z2, using (2), (4) and 1, — that
%9 ~e ¢ Where y=2+4(y+2) and p=(z+y)+2. Now 2+4(y+2)~e ¢, by
two applications of (4); hence interchanging x and z converts y into ¢,
and ¢ into y. So we also have gey~g x and

X ~ePX ~eX*P ~e¥
follows, proving (5).

Proor or THEOREM 1.1. We first recall the definition of the terms
7, 0, (2<3) and P, vy vyv; (1 <5) employed to express 2. From the form
in which A is written it is obvious that it can be derived from the system
of equations x=P, xx,x,x;, 0<u<5. These equations clearly belong to
A, whence we infer that 4 € A.
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The assertion that A < @[] is the less obvious half of the theorem. To
prove this by the direct method, as used for the lemma, would be depress-
ingly tedious; we will prove instead the equivalent statement that every
algebra in which 1 is valid is a lattice. Assume therefore that B=
{|B|, +, ) is an algebra which satisfies A.

For simplification we introduce some special notation for the poly-
nomial operations in B corresponding to formal terms mentioned above.
For 0<% <3, 8, is the three-place function ¢,® [for example Sy(a,b,c)=
a+b-(a-c)]; T is the three-place function ©®

T(a,b,c) = a-b+(b-c+a-c);

and for 0<pu <5 and s=(s!,8%s% € 3B, E,[s] is the one-place function
derived from the term g,= P xx,x,z; by setting

R [s](b) = 0, P(b,s%,6%6°) .

(Thus, for example R,[s](b) = T(Sy(b,s*,s%),83,b).)
We have to show that A<@®B or, in view of the lemma, that
{Ags- . ., A3} = @B. Another way to say this is

(1) Assume that » <3 and that a,b,c € |[B|. Then §,(a,b,c)=a.

To prove (1), we first notice that the validity of 4 is equivalent to the
following system of functional relations:

(2) For every s,,...,s;t,,...,ty € 3B,
Ry[s¢lo...oRy[s;]o By[ty]o ... o Ry[ty] = t5,

the identity function on |B|.
These relations in turn imply

(8) Assume that u <5 and that s,s’ € 3|B|. Then R [s] is a permutation
of |B|, moreover B, [s]=R,[s].

In fact we easily obtain the first statement in (3) by placing t,=s, in (2)
for v <4, and by referring to our earlier observation (I) concerning per-
mutations. The second statement then follows if we permit s, to vary
in (2) while keeping all the other parameters fixed, and subsequently
cancel permutations from the resulting functional relations.

To finish the proof we choose x <3 and a,b,c € |B|, and set d=8,(a,b,c).
Looking briefly at the definitions involved, we see that

Rl[(“:a’:a>](a) = R0[<a,a’a>](a) (=T(a”a:a)) )
R0[<d:a’a>](a) = Rn+2[<b’c, a’)](a') (=T(d’a’a’)) s
Rx+2[<b’ c, d>](a’) = Rl[(“: a, d)](d) ( = T(d, d, a)) .
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From this we infer, with two applications of the second statement in (3),
that R,[{a,a,a)](a)=R,[{(a,a,a)](d). As R,[{a,a,a)] is a permutation,
a=d follows — that is, S,(a,b,c) =a. This concludes the proof of (1) and
completes the proof of Theorem 1.1.

The proof of Theorem 1.1 exemplifies a line of argument which per-
mits many refinements showing that various equational theories are
one-based. Without making any attempt to discover the best result
obtainable by the method, we can easily prove the following theorem,
which yields as one special case the result obtained for A. The proof
does not differ essentially from the foregoing argument.

THEOREM 1.2. Let O be a finitely based equational theory formalized in
an arbitrary system of equational logic. Asswme that for some term
T(xy,. . .,x,) (2=2) O contains each one of the equations

r=1y,x,...,%), e=1(2,¥y,2,...,%), ..., x=17(2,...,2,Y).

Assume also that © has a base composed solely of equations of the form
x=0. Under these assumptions O is one-based.

Theorem 1.2 has important implications for every theory @ which is
definitionally equivalent, in the sense defined in [7], to the theory of a
lattice with operators (i.e. a lattice having possibly other fundamental
operations besides the lattice theoretic sum and product). Such a theory
O automatically has a term v with the property stated in Theorem 1.2.
Each such theory is one-based iff it has a finite base consisting of equa-
tions of the form x==0, where z is a variable. (Moreover, on the strength
of Theorem 1.1 alone it follows that every such theory having a finite
base can be based on two equations. The proof for this may be summa-
rized in a few words: @ has two terms o(x,y) and ~(x,y) which define,
so to speak, the lattice operations. By Theorem 1.1, @ then contains a
certain equation x=p which is equivalent to the lattice axioms with ¢
and #z replacing 4 and .. The proof is concluded by observing that if
{t,=9,} is a finite set of equations of @, then each of the equations is
derivable from z=p combined with the equation of @ which — treating
¢ and = as 4 and . and choosing distinet variables y, not occuring in
any equation y,=¢, — can be written as Yy, <y, =3¢,*y,.)

We may, in particular, take for @ a finitely based theory definitionally
equivalent to the theory of a boolean algebra with operators. The assump-
tions of Theorem 1.2 are readily verified in this case, and it follows that
O is one-based. This result is also a corollary of [7; Theorem 3]; in fact,
it seems to be the only interesting application the two theorems have in
common.
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For theories definitionally equivalent with the equational theory of a
lattice (without operators), it turns out that one-based theories have a
simple characterization. The results of this section are largely summa-
rized in Theorem 1.2 and in the following theorem. The proof is rather
trivial, requiring an application of Theorem 1.2 and one new idea.

THEOREM 1.3. Let O’ be a finitely based equational theory definitionally
equivalent with a lattice theory ©. Then O’ is two-based. Furthermore, an
equivalent condition for O to be one-based is that either @ =A or O =Q, and
in case @=A, that every lattice term which serves as the definition in © of
an operation symbol of @' be A-equivalent to a monomial, i.e. to @ sum or
product of variables.

As a corollary, we easily infer that every theory definitionally equiv-
alent with 4 and having just one operation symbol — e.g. the theory of
lattices treated as algebras (X,D) with the operation D defined by
Dzxyuwv=x-y+u-v — fails to be one-based.

2. Bases for finite lattices.

Though it lacks profundity, it is an interesting fact about finite lat-
tices that each has a finite equational base. In this section we establish
that fact. The argument we shall use is quite elementary and rather
trivial compared with an argument to establish the analogous result for
finite groups [4]. Theories of the form @L, where L is a finite lattice,
are large in one sense [3]: There exist only a finite number of lattice
theories extending such a theory and each is the theory of a finite lat-
tice; no such theory is identical with 4. Consequently it follows from
Theorem 1.3 and 2.1 below that every such theory @L is two-based, but
fails to be one-based unless the universe of L has just one element.

We preface our theorem with a few remarks. The substance of the
remarks is well known, and applies as well to any finite algebra whose
set of basic operations also is finite. Let 4 be a finite lattice. For each
integer &> 0 we put

O@4 = O[P®] where Y@ = {ec@4:¥V(e))<a};

in other words the theory generated by the valid equations of 4 in which
at most « variables occur. Now it should be clear that if @4 is finitely
based then @4 = @@ 4 for some «; but the converse is also true: it is not
difficult to see that each of the theories @®A will have a finite base,
and even one that can be constructed by a mechanical procedure.

To see this, set @ = @A and consider the relation of @-equivalence ~g.
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Restricted to terms 7 containing only the first « variables, ~g coin-
cides with the kernel of the function 7 «s> ), and therefore it divides
the set of these terms into a finite number of classes, or cosets, of equiv-
alent terms — the number of cosets being bounded by the number of
place operations on |4|. We choose from these cosets a system of rep-
resentative terms m,,...,7ms, one from each coset, taking in particular
each of the first « variables as the representative of its class. (This can
be done unless #(]4|)=1 and that case is trivial. Notice that given A
and « a system of representatives can be effectively found.) One can
then prove that the following equations form a base for @®A4: for
u,v<f, the equations
n4n,=n and wmem =m,,

where 7, and 7, are the respective representatives of the cosets of 7,4,
and 7z,+7,. In fact, letting @, denote the theory based on these equa-
tions, an easy argument by induction on the length of a term 7 built
from the first « variables shows that if 7 is in the ~g coset of 7, then
t=um, € 0. If then a certain equation v=¢ relating two such terms
belongs to @ — that is 7~ 0 — then it also belongs to @ . As every
equation involving at most x variables is equivalent to one of these equa-
tions, @@WA = 0, follows immediately.

THEOREM 2.1. Let L be a finite lattice. Then OL has o finite base.
Moreover, if the universe of L has x elements, & is the greatest integer n
satisfying 2* <x, and n=1+x, then @L= O0L,

Proor. From the above remarks the theorem will follow if, setting
H=0®0L, we can prove that H=@L. Letting V* denote a fixed, but
arbitrary, finite set of variables, it is sufficient to show that every valid
equation of L whose variables all belong to V¥ is a member of H. This
will obviously be an immediate consequence of the following two proposi-
tions (which concern a certain syntactical transformation, S, defined in
the fourth paragraph below).

(I) Let the equation ¢, or g=y, satisfy V(e)< V¥, If ¢ € @L, then the
equation S(@)=S(y) is a member of H.

(II) Let the term ¢ satisfy V(p)< V¥. Then the equation g=S(¢) is a
member of H.

After defining S, the remainder of the argument will be directed to prov-
ing (I) and (II).

To simplify matters we now make the assumption that »>4. This
excludes certain trivial cases that are easily handled and, in particular,
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implies that »®><x‘, a fact we shall need. Notice that A< H. More-
over, for »>¢ the equation
(1) T Y =323 Yai

n<v acdy  u<é
belongs to H. In fact, each of these equations can be derived from the
one equation where v=£+1 (combined with A). That equation has &+ 2
variables and £+ 2 <#. To see that it belongs to @L, it suffices to ob-
serve that for any a,,...,a; € |L|, there is a § <& such that

Wy = 2oy -

If this were not the case then the sums of the various subsets of the a,
would be distinct elements of L, and we should have 2f¢+1 <y, contra-
dicting the definition of &.

In the reasoning that follows, the letters C, D, E and C’, D', E' are
reserved for equivalence relations on finite sets of variables. We use
domC to designate the domain of C; Cxy to express that =, y are C-
related; &(V) for the set of all equivalence relations with ¥ for domain;
and to each positive integer 5, &4(V) for the subset of those having at
most § cosets.

Assume now that the term o and the relation C satisfy V(¢)=domC.
Then My(o) will designate the term obtained from ¢ by means of a
simultaneous substitution x w> [T{y: Cxy}, € V(o), and My%o) will
designate the term obtained by substituting instead x w» x5, where zo,
is the least variable y (in the preassigned ordering of all the variables)
such that Czy. If C € &;(domC) then M%) contains no more than é
variables. We list below some further obvious consequences of these
definitions.

(2) Let V be a finite set of variables, C,D be members of &(V) and a,7
be terms such that V(e)uV(z)= V.
(i) Mg(oe7)=Mg(0) s Mo(7).
(ii) Mg(o7) =Mc(o)+Mc(7).
(ili) Mg(0)=Mc(Mc%0)).
(iv) Mg%0) ~ 4 M(Mg(0)).
(v) If C< D, then
Mp(o) <4 Mg(o) <40.
(vi) If Ce &(V) and D € &4(V), then CnD € &4.4(V).
(vil) If Ee&({xg:x€V}), and E' € &(V) is defined by
E'xy & Exgyg, then
Mg (o) ~4 MC(ME(MCO(U))) .

Math.Scand.27 — 3



34 RALPH McKENZIE

We now define the function S, referring to the previously given set of
variables V#, by setting

S(e) = 3 {Mp(0): De &(VH},

for every term ¢ for which V(o)< V*.

It remains to prove that S has the properties (I) and (II), as claimed
at the beginning. (I) presents no difficulty. Indeed, assume that p=y is
an equation valid in L, whose variables belong to V¥ Let then De
&(V*#). From the given equation we derive by substitution the equation
Mp%(p)=Mp%x), which has at most » variables and thus belongs to H.
If we apply to this equation the substitution operator M, then, by
(2;iii), the result is the equation Mp(p)=Mp(x). Therefore, this equa-
tion also belongs to the theory H. Summing over D e &,(V¥) we get
S(@) ~z S(x), the desired result.

Statement (II) is proved by induction on the length of the term ¢
constructed from the variables V¥. It follows from (2;v) that S(p) <y ¢,
and it must be shown that ¢ <z S(p). The only non-trivial step in this
induction is

(IT') If o=y, x<zS(x) and p<zS(y), then p <z S(p).

Thus, we are reduced to proving (II'); the next two statements con-
tain the heart of the matter.

(3) Assume that C e &,4(V¥) and V(o)< V*. Let z be any variable not
belonging to V*. Then
(i) z*Mg(0o) <z 3 {x-Mp(o): D e &, (VH};
(ii) Mc(o) <g S(o).

(4) Assuming that V(o)< V¥ and = ¢ V* then we have
z+S(0) <g Y {z*Mp(o): De &(VH)} .

To prove (3), we first put 7=M %) and V'={y,: y € V¥#} and notice
that the equation

(i) 2ot < D{xMg(r): E€ & (V')}

belongs to H. In fact, under the assumptions of (3), this equation cer-
tainly has at most  (=1+¢) variables. To see that (i') is a valid equa-
tion of L we use, for the first time, the simple observation motivating all
of our definitions, viz: to every function a, correlating elements of L
with the variables of V', there corresponds a relation E € &,(V’) such that
7 and Mg(v) take the same value in L when evaluated at a — E is defined,
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of course, by Ex,x, < a(z,)=a(x,). Next we apply to (i’) the substitu-
tion operator M, leaving x untouched, and infer, by (2;iii) and (2;vii),
that H contains the equation

(i) x*Mcg(o) < X{xMg(o): E€ &,(V')};

in which the relation E' matched with E is defined by E'yz & Eyszg.
Clearly each E’e€ &,(V¥), so (3;i) follows immediately. (3;ii) follows
directly from (3;i).

To prove (4), let 0 be the term represented by the right hand expres-
sion in (4), claimed to satisfy 2+S(c) <z 0. We notice that in view of (1)
and the definition of S, (4) will be established if we can prove that

zeY Mp(0): DeT} <50,

where J is any non-empty subset of &,(V¥) with at most £ members.
We let C=N.7 and simply observe that, by (2;vi), C € &(V¥) and
consequently by (3;i),

z+M(o) < 0;

which when combined with the relation
w'Z {MD(ﬂ) :De .7-} SA. x’MC(O') B

easily inferred from (2;v), gives the desired result.
Returning now to (II'), let ¢ =y, x <z S(x) and p <y S(y). Then by
repeated application of (4) we obtain

@ <g S(1)+S(y) < T{Mp(x)*Mp(y) : D,D" € &(V¥)} .

To prove (II'), it therefore suffices to prove that each term in this sum
is <zS(p). Let thus D,D’' e &(V¥). We set C=DnD' and infer by
(2;vi) —recalling that x2<xf was assumed at the outset — that
C e €4(V¥. We can thus apply (3;ii), as well as (2;v) and (2;i), and
obtain

Mp(x)*Mp(y) <4 Mc(x)*Mc(y) = Mo(p) <z S(p) .

This establishes (II'), and the proof of Theorem 2.1 is now complete.

A slightly stronger result may easily be established by examining the
foregoing argument. Given » and defining # just as before, every lattice
L of cardinality » has as a base the set ®®L, combined with the set of
all equations of @"L which are valid in every x-element lattice.

It would certainly be interesting to know whether Theorem 2.1 is true
for some smaller values of 7 (depending recursively on x). In this con-
nection, we define 7(x) to be the least integer « such that the theory of
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any lattice of cardinality » can be based on equations containing no more
than « variables. It is known then that

(1) =2, n(2) =7n03) =74) =3, 75(05)=4;
while Theorem 2.1 states that
nx) < 1428 i 0 < 2841,

We have not been able to determine whether the function 7 is effectively
computable (recursive).

By means of another argument, similar to the above but more in-
volved, Theorem 2.1 can be extended to finite lattices with a finite
but arbitrary set of additional operations. Examples have been con-
structed by several people to show that a finite algebra with finitely
many operations need not have a finite equational base. The following
theorem implies, on the other hand, that every such algebra in which the
operations of a lattice can be defined does have a finite base.

THEOREM 2.2. Let B be a finite lattice with operators, having altogether a
finite number of basic operations. Then the equational theory of B s
finitely based ; in fact it can be based on two equations.

3. Examples of non finitely based theories.

All theories mentioned in this section are understood to be lattice
theories. We first consider some equations suggested by the lattices B,

Fig. 1

(#=>5) diagrammed in Fig. 1. For » a positive integer and u,v,& <x let
us define b,(u,7) to mean

vEutl (),
and f,(u,7,&) to mean that

LE)ApEEH)IAE=v+1 (%).
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Then for x >4 we have an equation

Vit i o @ 2,0) < S0 T,

with the variables x,,...,2, ;. One can easily check that y, holds in
each lattice B, where 5 <A<x. However, y, is not valid in B, — in fact,
it clearly fails when the variables x,...,z,_, take for their respective
values the elements denoted by b,,...,b,_, in Fig. 1.

We infer from this that the infinite set of equations

I'={y,:x25}

is independent relative to A; it follows immediately that the theory
@[I'uA] has no finite base. It is not clear how the models of this theory

Fig. 2

may be described, but let us consider the infinite lattice of Fig. 2. We

have
@B = V., A»1 0B,;

in other words the equations of B are just those equations which hold in
all but finitely many of the lattices B, — as can be proved by noting
that B and B, have the same sublattices generated by A elements, if
20 <.

Consequently, @B has no finite base. Indeed, any finite subset of @B
is contained in a @B, and cannot imply the related equation y, which
is valid in B.

It proves rewarding to make a more critical study of theories con-
nected with these lattices. The results of that investigation will be stated
without proof. The results were discovered in part by A. Kostinsky. Let

Z=A.,0B,.

Then the theories in the interval [£, ®B] form a lattice, under the ca-
nonical operations which make the set of all lattice theories into a lat-
tice. This lattice [Z, @B] is isomorphic to the lattice of all subsets of I.
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For the isomorphism we map 2w @[Zul], X<I. The minimal ele-
ments in the lattice are the theories

O[Eu{y,}]] = AN{OB, : 4<x=*1};
and the maximal elements are the theories
O Eu(I'-{y;})] = ®Bn 6B, .

Every theory @ in the interval Z< @< @B fails to have a finite base,
although each one has an independent base. Actually, it is not very
difficult to construct an independent base for @[FuZl], given 2T
(It is an open question whether every lattice theory has an independent
base.)

The proof of these results makes essential use of [3; Cor. 3.2], from
which it follows (indirectly) that every finitely generated, subdirectly

—
~

irreducible model of the theory & is monomorphic to one of the lattices
B,.

x
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