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A SHARPER FORM OF THE DOEBLIN -
LEVY - KOLMOGOROV - ROGOZIN INEQUALITY FOR
CONCENTRATION FUNCTIONS

HARRY KESTEN

1. Introduction.
Let X,;,X,,... be independent random variables and

8p =21 X

It is well known (see [4, Theorem I111.2.9] or [9, Sec. 42-44]) that the
distribution of §, is “spread out’ more and more over the real line as
n — oo, unless §, —median(S,) converges with probability 1. Doeblin
and Lévy [3], [9, Sec. 48], [1], were the first to give quantitative esti-
mates for the spreading out of the distribution of §,, by means of con-
centration functions. For any random variable Y, its concentration
function is defined by

(1.1) QY; ) =sup, PlesY<x+4}, 420.

Kolmogorov [8] improved the results of [3] and [Sec. 48 in 9] and all
estimates were put together in one inequality by Rogozin [11]. Rogozin’s
result is the following:

THEOREM 1. There exists a universal constant C such that for any inde-

pendent random variables X,,. .., X,, and real numbers 0<2,,...,4,=2L,
one has
(1.2) Q(Sns L) = CL{3T, 22[1-Q(X 45 1)1}

The aim of this note is to prove the following sharper form of this
inequality:

Turorem 2. For the constant C of Theorem 1 and any independent
random variables X,. . .,X,, and real numbers 0<2,. .., , < 2L, one has
P AR - QX 4)]Q(X; L)

{Z?=1 AP[1-Q(Xy; }%)]}3/2

(1.3)  Q(S,; L) < 4-24(1+90)L
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< 42414 90)L max; ., Q(X;; L) {37122 [1—Q(X,;; A1}t
An application of this theorem will be given in Section 3.

Nore. Shortly after the completion of this manuscript Professor
Esseen kindly informed the author of an improvement of Theorem 1.
In Theorem 3.1 of On the conceniration function of a sum of independent
random wvariables, Z. Wahrscheinlichkeitstheorie Verw. Geb. 9 (1968),
290-308, Esseen proves that (1.2) may be replaced by

(1.4) Q(Sn; L) = CL[37 1 A2 DX X 55 ;)]
where
DX 3) = At [ APUX g eda}+ PUXSI 21,

and X,® has the distribution of X;— X, for some X,  independent of
X, but with the same distribution as X,;. Without essential changes
in Sec. 2 below, this improvement can be used to sharpen (1.3) to

1 AED2(X 25 4) QX5 L)
TS e DA 2P

max; ., @(X,; L)
D7 142D (X 55 A0

(15)  Q(S,: L) < 4-2(1490) L2

IIA

4-241+90)L

However, the interest of Theorem 2 lies in the cases with max,_, @(X ;L)
small, and one easily sees that in these cases (1.5) is no better than (1.3).

Before we give the proof of Theorem 2 we would like to point out
a few things.

Firstly, the last member of (1.3) is an improvement over the right
hand side of (1.2) only if

maxX; <, @(Xy; L) £ C[4-24(1+90)]

so that the main interest of Theorem 2 lies in the cases where
max;_,@(X,; L) becomes small. On the other hand the loss incurred
by replacing C by 4-2}(1+9C) seems unimportant because for applica-
tions the precise value of C does not seem to play a role.

Secondly, we would like to write out the special case obtained by taking
M=...=1, and X;,...,X, identically distributed.

Cororrary 1. If X,,...,X,, are independent, identically distributed
random variables and 0 <AZL2L, then
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1 L QX4 L)

nt A [1—Q(Xy; A

Especially for discrete variables this should be compared with Theorem
2 in [10].

Thirdly, we want to draw the reader’s attention to Esseen’s elegant
and short proof [5] of Theorem 1, using only characteristic functions.
QOur proof of Theorem 2 uses Theorem 1 and combinatorial methods.
It would be interesting to have a proof by means of characteristic
functions for Theorem 2 as well.

Finally we point out that Rogozin announced a sharpening of Theorem
1 in another direction than Theorem 2 in footnote 1 of [11].

(1.6) Q(S,; L) < 4-2¢1+90)

2. Proof of Theorem 2.

We begin with a few simple reductions. For the situation given in
the theorem, introduce

a; = A2[1-Q(X;; 4],
110 QX5 L)

i1y ’

={i: 154<n and Q(X,;; L)=2u}.

and

The second member of (1.3) can then be written as
(2.1) 4-22(14+90)L(O7 ja:) .

But it follows from

n 1 n n
da; = — >a QX L) 2330
i=1 2u o i=1

ieA €A
that

HV
M 3

-.
]
-

and hence

i=1 i=1 ked
ted

-1
(2.2) 4 2%(1+90)L(§: )_%,ug 2(1+9C)L(2a,-) max@(X,; L).

It is almost immediate from the definition of ¢ that for any pair of
independent random variables Y,Z
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(2.3) QY+Z; L) £ max{Q(Y; L), QZ; L)},
(see also Section 29 of [9]). Therefore
(2.4) Q(S,; L) = Q(ZiesXis L) .

In view of (2.2) and (2.4), the first inequality in (1.3) will follow (by
renumbering of the X; with ¢ € A) once we have proved the inequality

max; ;e @(X;; L)
(L)t

for any independent random variables X,,...,X,,, S,=3",X,, and
any real numbers 0<4,,...,4,<L.

The second inequality in (1.3) is obvious so that we may restrict
ourselves to (2.5). We see at once that (2.5) is implied by Theorem 1
if max;;.,,Q(X;; L) =75, so that without loss of generality we can take

(2.5) Q(S,; L) < 2(1+90)L

(2.6) max; ;< QX3 L) £ 5.
Moreover,
210 S 2y A2 = mL?,

so that it suffices to show
max; ;e @(X;; L)
mt

(2.7) Q(Sy; L) = 2(1+90)

under the side condition (2.6). In addition we may assume m =4 since
by (2.3)

For our last reduction we define, for 0<a<1, m=1,
B(m,a) = sup Q(Sy,; L)

where the sup is over all sequences Xj,,...,X,, of independent random
variables with max;_;.,@(X;; L)<a (of course, §,=37,X,). (By
changing scale we see that R(m,a) is independent of L >0, but, since
we think of L as fixed, this point is of no importance.) We claim that
forall 0<a<i

(2.8) R(m,a) = 8Cam~t + 2-BmI R(m,2a) .

Before actually proving (2.8) we show that it implies (2.7), provided (2.6)
holds and m=4. In fact let X,,...,X,, be independent and let

(2.9) a = max;;, QX L) = 4.

Let r 2 1 be the unique integer with
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(2.10) 2a < }<24a <}
Then (2.8) will imply

(2.11) Q(Sp; L) £ 8Cam—% + 2-BmMPR(m, 2a)
8Cam~ + 2-UmgC2am-t + 2-2WmIR(im, 22q)
S8Cam—* ZJL o 2-jliml+j 4. 2—(r+1)[imlR(m,2r+la)

16Cam—t + 2-A+DR(m,27+lg) for m=4.

A IA TIATIA

Finally, by Theorem 1 with 1;=L, for any sequence Z,,...,%, of

m
independent random variables with

max;c;em@(Z;; L) £ 2+1a¢ and } £ 2741g < &,

we have
Q.2 L) = ¢
i=1%1%> = m
i1 (1 —Q(Zy; L)
c 1 2t 4.2iC

P ——— S i S 21‘+1a 3

Tmi [l =2 g T omt T b
so that
(2.12) R(m,2+1g) < — =~ gr+1q

whenever (2.10) holds. Since 21, (2.11) together with (2.12) implies
(2.7). Now we give the

Proor or (2.8). Let X,,...,X,, be independent random variables
satisfying
(2.13) max; ;@ X5 L) S a < g

let I;=[b;,b;+c;] be closed intervals for which P{X,el,}=}, but
P{X;eI}<} for any interval I of length less than c;. The existence
of such I; is easily shown and by extending our probability space we
may even assume that there exist events X, with

{Xi € [bi’bi+ci]} < ‘E'i < {X‘i € [bi,bi'l"ci]} s
P{‘E’L} = % )

and such that X;,...,X;, E,,...,E; are independent of D. RN, E3
E,,...,E;, whenever {j;,...,j,} N {iy,...,5,;=0. We denote the com-
plement of E; by E,, and assume without loss of generality that the X;
are so ordered that

(2.14) S¢S ... 2¢,.
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Then, for any closed interval J=[u,u+ L] of length L,
(2.15) P{S,eJ} = SEMP{E,n N B/} .
P{S,eJ | E;n N B/} + PANREPE/YP{S,,eJ | NEP B/}
= YWm 2-P(S, eJ | BE,n NZLE;} + 2-4mP{S, eJ | ﬂj[-i"{l E/}.

Now let Y,(Y,’) be random variables with the conditional distribution
of X, given that E, (resp. E;) occurs. Also assume that X,,...,X,,
Y,....Y,, Y,....Y, are independent. Then

(2.16)
P{S,ed | B,a NI B} = P{Yy + ... + Y+ Y+ 3", X, eJ)}

and also, when xeJ — I,

(2.17)  P{Y;eJ—z} = P{X;eJ—a| E;}
< 2P{X,e(J—2)nl;} £ 2Q(X,;; L) .

By a similar chain of inequalities,
(2.18) P{Y,eJ—x} =0  when z¢J—-1I,.
From (2.16)—(2.18) one deduces
(219)  P{S,eJ| E,nNiZLE/}
- fp{yl'+ A Y43 X, e da} P{Y e J—a)
SPY/ 4. ..+ Y+ X e - 132Q(X;; L)
Since the length of J—1, is at most L+c¢; =< 2c; (because (2.13) implies
0<L<c,;), another application of (2.3) and Theorem 1 shows for

i = [4m]
(2.20) P Y/ +3m 0 Xie =1} £ QST ymn X5 26)
= Czcilimsupsw{zgitémlﬂ (c;—eP[1—Q(X;; c;— )]} = 20(3-4m)*.
For the last inequality we used the estimate
QX;5¢,—¢) < Q(Xj5¢,—¢) < §, 154, 0<e<cy,

which is a consequence of (2.14), and the definition of ¢;. The inequality
(2.19) together with (2.20) shows

(2.21) P{S,eJ | B,nNZLE/} < 80m—*Q(X;; L) < 8Camt,

whereas
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(2.22)
P{S, eJ |NAWEY = P{Y/+ ...+ Y+ Xgugaa + - - + X, €}
< RE(m,2a),

because Y',....¥ . Xyugirs- .-, X,, are independent, (2.13) holds,
and

1
QYY) = sup, PN e oo+ 11| B} £ 5y

QX L) £ 2a.

(2.15), (2.21) and (2.22) imply (2.8), and the proof is therefore complete.

3. Application.

For any random variable Y, the dispersion function D(Y; q) is defined
as the inverse function of the concentration function, that is,

(3.1)  D(Y;q) =inf {L|QY;L)zq}
= inf {L | 3 v such that P{Y € [v,v+L]}2¢},
0=¢=1,

where we take the inf over the empty set as oo.

As an application of Theorem 2 we shall now prove

THEOREM 3. Let X, X,,... be independent, identically distributed
random variables and S,=37 X,. Assume that for some fixed L>0,

(3.2) lim limsup M = 0.
Then, for all 0<q;<q,< 1,
(3.3) limsup, ,,  ——— < .

" D(Sna ql)

REMARK. Let
m,, = m(S,) = median of §, .

Since any interval which contains S, with probability greater than }
must contain m,,, one has for 1 —e>}
(3.4) P{|S,,~m,|>D(S,;1—¢e)} £ ¢.

It is an easy consequence of (3.3) and (3.4) that for each fixed ¢, 0<g <1,
there exists a function &(x; q) such that e(z; ¢) > 0 as # — oo, and
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|Sn—mnl

(3.5) sup,~, P {m

>x! < e(xs q) .

In other words, D(S,;q) is ‘“‘the right normalization factor for S,”.
It is this fact which makes Theorem 3 the main tool for the proof of the
following Tauberian theorem for random walks which will be proved
in [7]:

THEOREM 4. Let X,,X,,... be independent random variables, all with
the same distribution function, symmetric about the origin. If for some fixed
interval I, for fixzed 1<a=2, and for a slowly varying function M,

nl-Va«

M(n)

as n —> oo,

Qi1 P{Spel} ~
then

. s,
]lmn_)m P{m éx} = F“(x) N

where F (-) is the symmetric stable distribution function with characteristic
Junction exp(—|t|*) and C is a constant depending on I and the support of
P{X, edx}. If X, does not have a lattice distribution, then

C = a(a—1{I(x"I|}.

We would also like to point out that Theorem 3 is related to Doeblin’s
results in [2]. In fact, in the terminology of [2], (3.5) implies that the
collection of powers of the distribution of X, is strongly compact. Thus
(3.5) implies the condition in Theorem 10 of [2].

Proor or THEOREM 3. Assume that (3.3) fails for some fixed
0<¢,=¢s<1. Let n, > oo be such that
(3.6) lim;, , ——+— = o
o -D(Sn,; ql)
We prove the theorem by showing that (3.6) contradicts (3.2). Put
Li = D(Sng; q) -

Since Q(S,; 1)=0(n"*) for each fixed 4 (by Theorem 1) one has neces-
sarily

(3.7) L;—>o agt—>oo,

and by the definition of L, we can choose intervals J,=[x;,x;+ 2L;]
such that
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(3.8) b; = P{SnieJi} =q.
By (3.6), L;2D(8,,; q3) — o so that we even have
(3.9) @ £b; ¢,

Next we introduce the conditional distribution functions of §,, given
S,,€J; resp. 8, ¢ J;. These are given by

1
Fyx) = -b—P{Sn‘.<x, Sy, € J5}
i

and
1
Gy(z) = (1—b,) P{Sn,éx’ Sni ¢ Jz} .
Of course
(3.10) P{Sn‘§x} = b Fy(x) + (1-b,)Gy(x)
and thus, if Y,0, Y@ .  Z®Z6O .. are independent random vari-

ables, all Y, with distribution function ¥; and all Z,® with distribu-
tion function G;, then for any Borel set 4

(3.11) P8, € A}

—m, (’g) bE(L—b)nkP{Y, 0+ .. + Y, 0420+ .. +Z9, €4}

(recall that the distribution of §,,, is the m-fold convolution of the

mng
distribution of §,; and use (3.10)).
Before we can apply (3.11) we need some estimates for Q(Y,®; -)
and @Q(Z,?; -). First, for any Borel set 4

P{Y®Wed} = P{Sm e} P{Sn‘ ednd;}

< b,--lP{SmeA}

§ ql—lP{Sng € A} ’
so that
(3.12) QYD L) < ¢,72Q(8,;; L) = o(1) as ¢ — oo, L fixed,
and, similarly,
(3.13) QZ; L) = (1—¢2)72 QS5 L) -
Also
(3.14)  Q(Z,9; mL;) = sup, P{S,, & J;}* P{Sy, € [y,y+mLy], Sp éJy}.
We claim that there exists a A <1 such that for each m

(3.15) limsup;_,  @(Z;®; mL;) <A< 1.
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For if no such 1 exists then we can find a subsequence B={i,,7,,...}
and m,; =1 such that

(3.16) QZS; mL) >1 as 14—, 1€B.
By (3.6) and the definition of L; we can even choose B and m,; such that
(3.17) B S

D(8,;5 1)

On the other hand, by (3.14), (3.16) means that there exist ¥, such that
(8.18)  P{S,, € [ypys+miL] U [ 2;+2L;]} -1 as ¢ - o0, t€B.
Since by (3.17) no interval with length O(m;L;) can contain S, with
probability ¢,, we must then have
m;L;

[y — |
and, by (3.18) this means that the distribution of (S,,—x,)y;—=x,;|*
converges weakly to a distribution concentrated on 0 and 1 or 0 and —1

as ¢ —> o along a suitable subsequence of B. The limit distribution
must be a genuine two point distribution, since by (3.9)

0<gq = P{Snie [0, +2L;]} S ¢ < 1.

-0 as 4-—>o00, 1B

This, however, is not possible by [6, Theorem 24.2], because a two point
distribution is not the square of any distribution, and a fortiori it is
not infinitely divisible (if F is supported on one point, so is F=F and
if the support of F contains more than 1 point, then the support of
F«F contains at least 3 points).

Now that (3.15) is established the proof is easily completed. Fix
m =1 for the moment. For any 0<k<m and any closed interval I=
[w,u+ L] of length L,

(3.19) P{YO4. . +YO4+Z04 . +ZD eI}
- fp{z1<i>+ 2D eday P{Y O+ .. + Y, O el—a}.

Since the distribution of Y@ is concentrated on J,,
P{YO4...+Y,Del—x} =0, when (I —2x)n [kx, kx;+2kL] = 9,
and by Theorem 2, for any =,

PY O+, . +Y,Wel—x} < Q(Z}’:l Y, L)
(H{1-Q(Y,0; L)} 4-2(1490) Q(¥,®; L)
< 8:28(1490) (g, k)1 Q(S,,; L) (see (3.12)) .

IIA
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If we write, for short,
D, = 8-24(1+9C)q, !
then we can bound (3.19) above by
D, k#Q(S,,; L) P{Z O+ ...+ Z® , e w—kw;— 2kLy, w+ L — k) .

Since L; = L for sufficiently large ¢ (see (3.7)), and k < m, the last factor
is bounded eventually by

QErEZ®; 3mLy) < C3mLy((m—kym2L2[1 — Q(Z,®; mL;)])-*

<
£30(A=-17F (m—k)H;
here Theorem 1 and (3.15) have been used. In total this gives the bound

30D, Q(S,; L)
(1= 1)} (k(m —k))?

for (3.19). In view of (3.11), (2.3), (3.12), (3.13), and (3.9), this shows
that for all sufficiently large ¢ and all «

P{S,, € [, u+ LT} S QZ,9; L)(1—bym ZWJ()bw1b)

30D, Q(S,; L)
i 7,01y
U= (em—gy)t T T

= Dym™Q(8,; L)

for some D, independent of m=1. In other words, for each fixed m,

S,.; L
liminf, | %@—L—% = mD,1,

mng?

which contradicts (3.2). This completes the proof.
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