CONGRUENCES FOR THE COEFFICIENTS OF THE MODULAR INVARIANT $j(\tau)$

HANS-FREDRIK AAS

1.

The modular invariant $j(\tau)$ is defined by

$$(1) \ j(\tau) \, = \, x^{-1} \, \prod_1^\infty \, (1-x^n)^{-24} \, \bigg(1 + 240 \, \sum_1^\infty \sigma_3(n) x^n \bigg)^3, \qquad x \, = \, \exp \left(2 \pi i \tau \right) \, ,$$

where

$$\sigma_k(n) = \sum_{d|n} d^k .$$

It is well known that the coefficients in the expansion

$$j(\tau) = \sum_{-1}^{\infty} c(n) x^n$$

have remarkable divisibility properties. Thus Lehner [7], [8] has shown that

$$(1.1) c(2^a n) \equiv 0 \pmod{2^{3a+8}},$$

$$(1.2) c(3^a n) \equiv 0 \pmod{3^{2a+3}},$$

$$(1.3) c(5^a n) \equiv 0 \pmod{5^{a+1}},$$

$$(1.4) c(7^a n) \equiv 0 \pmod{7^a},$$

for arbitrary positive integers a,n. The congruences (1.1)–(1.4) have been somewhat improved, we have

$$(1.5) \quad c(2^a n) \equiv -2^{3a+8} 3^{a-1} \sigma_7(n) \pmod{2^{3a+13}}, \quad n \text{ odd },$$

$$(1.6) \quad c(3^a n) \equiv \mp 3^{2a+3} 10^{a-1} \sigma(n) / n \pmod{3^{2a+6}} \quad \text{if } n \equiv \pm 1 \pmod{3},$$

$$(1.7) \quad c(5^a n) \equiv -5^{a+1} 3^{a-1} n \sigma(n) \pmod{5^{a+2}},$$

for a > 0. Formulas (1.5) and (1.6) are due to Kolberg [2], [3], and (1.7) to the author [1]. Kolberg conjectured that (1.4) could be sharpened in a similar way, and in this note we shall deduce the congruence

Received November 26, 1964.

$$(1.8) c(7^a n) \equiv -7^a 5^{a-1} n \sigma_3(n) \pmod{7^{a+1}},$$

and from (1.8) and the simple congruence

$$n\sigma_3(n) \equiv 0 \pmod{7}$$
 if $(n/7) = -1$,

where (n/7) is Legendre's symbol, we deduce

$$c(7^a n) \equiv 0 \pmod{7^{a+1}}$$
 if $(n/7) = -1$.

From (1.8) it follows especially that 7^a is the exact power of 7 dividing $c(7^a)$, as conjectured by Lehner.

The proofs of (1.5)–(1.7) are in two parts. The first part consists in proving the theorem for a=1. The second part of the proof proceeds by induction on a. Here the identity (2.1) for $j(\tau)$ plays an essential role.

In proving (1.8) we shall for the second part use only a slight modification of Lehner's proof. We could have proved (1.8) by the method used in [1], thus including a new proof of (1.4), but the calculations would be very tedious.

2.

Our starting point is the following lemma (see Kolberg [4]): Let p be one of the primes 2, 3, 5, 7, 13 and put

$$\Phi_p(\tau) = x(\varphi(x^p)/\varphi(x))^{24/(p-1)}, \qquad \varphi(x) = \prod_{1}^{\infty} (1-x^n).$$

Then there exist constants A_{kp} such that

(2.1)
$$j(\tau) = \sum_{k=-1}^{p} A_{kp} \Phi_{p}(\tau) .$$

From this lemma we easily get the identity

$$(2.2) \quad j(\tau) = g^{-1} + 748 + 82 \cdot 7^4 g + 176 \cdot 7^6 g^2 + 845 \cdot 7^7 g^3 + 272 \cdot 7^9 g^4 + 46 \cdot 7^{11} g^5 + 4 \cdot 7^{13} g^6 + 7^{14} g^7.$$

where $g = \Phi_7(\tau) = x(\varphi(x^7)/\varphi(x))^4$.

We introduce an operator L defined by

$$L\sum a(n)x^n\,=\,\sum a(7n)x^n\;.$$

For an arbitrary power series

$$f(\tau) = \sum a(n)x^n, \qquad x = e^{2\pi i \tau},$$

we define the "7-dissection", $f(\tau) = f_0 + f_1 + \ldots + f_6$, by

$$f_j = \sum a(7n+j)x^{7n+j}.$$

To find Lg^{-1} we need some results on the 7-dissection on $f(\tau) = \varphi(x)$, proved by Kolberg in [5]:

$$\begin{split} \varphi(x) &= \varphi_0 + \varphi_1 + \varphi_2 + \varphi_5, & \varphi_3 &= \varphi_4 = \varphi_6 = 0, & \varphi_2 &= -x^2 \varphi(x^{49}) \;, \\ \varphi_0 \varphi_1 \varphi_5 &= \varphi_2, & \varphi_0^3 \varphi_1 + \varphi_1^3 \varphi_5 + \varphi_5^3 \varphi_0 &= -x \varphi(x^7)^4 - 8\varphi_2^4 \;. \end{split}$$

Using these results we get by direct computation

$$\begin{split} \left(\varphi(x)^4\right)_1 &= 4(\varphi_0^3\varphi_1 + \varphi_1^3\varphi_5 + \varphi_5^3\varphi_0) + \varphi_2^4 + 24\varphi_0\varphi_1\varphi_2\varphi_5 \\ &= -4x\varphi(x^7)^4 - 7x^8\varphi(x^{49})^4 \;. \end{split}$$

Hence

$$(2.3) Lg^{-1} = -4 - 7g.$$

We note that

$$Lf(\tau) = 7^{-1} \sum_{\lambda=0}^{6} f(\tau + \lambda)/7$$
,

where $f(\tau) = \sum a(n)x^n$. Putting

$$h = 7^2 \Phi_7(\tau/7) = 7^2 g(\tau/7)$$
,

we have from [7]

$$(2.4) h^7 + \sum_{j=1}^7 (-1)^j p_j h^{7-j} = 0,$$

where

$$(2.5) (-1)^{j+1}p_j = 7^4 \sum_{k=j}^7 b_k g^{k-j+1},$$

The conjugates in h of (2.4) are clearly

$$h_{\lambda} = 7^{2}g((\tau + \lambda)/7), \qquad \lambda = 0, 1, 2, ..., 6$$

since replacing τ by $\tau+1$ leaves g unaltered. Hence for the sum of the conjugates we have

$$(2.7) \quad Lg(\tau) \,=\, 7^{-1} \, \sum_{0}^{6} g \big((\tau + \lambda) / 7 \big) \,=\, 7^{-3} \, \sum_{0}^{6} \, h_{\lambda} \,=\, 7^{-3} p_{1} \,=\, 7 \, \sum_{1}^{7} \, b_{k} g^{k} \;.$$

We introduce the symbols

$$P = a_1 7g + a_2 7^2 g^2 + \ldots + a_r 7^r g^r,$$

$$Q = b_1 g + b_2 7^2 g^2 + \ldots + b_r 7^t g^r.$$

where the a's, b's, r and t are integers $(r \ge 1, t > 1)$. P denotes a polynomial of this type, not necessarily the same one at each appearance, likewise for Q. Lehner then proves

$$7^k L g^k = 7Q, \qquad k \ge 2 ,$$

by the aid of Newton's formula for the sums of powers of the roots of an algebraic equation. It is obvious that (2.7) and (2.8) imply

$$(2.9) LQ = 7Q.$$

Lehner's proof really implies (cf. [7, p. 147])

$$(2.10) 7^k L g^k = 7P, k \ge 2.$$

An immediate consequence of (2.7) and (2.10) is the equation

$$(2.11) LP = 7P.$$

3.

We now rewrite (2.2) and (2.7) using the symbol P:

$$j(\tau) = g^{-1} + 748 + 7^3 P.$$

$$(3.2) Lg = 7 \cdot 82g + 7P.$$

Comparing (2.3), (2.11) and (3.1) we obtain

$$Lj(\tau) = 744 - 7g + 7^4P$$
.

(3.2) and the last equation yield

$$L^2 j(\tau) = 744 - 7^2 \cdot 82g + 7^2 P ,$$

and generally

(3.3)
$$L^{a}j(\tau) = 744 - 7^{a}(82)^{a-1} + 7^{a}P.$$

From the obvious congruence

$$\varphi(x)^7 \equiv \varphi(x^7) \pmod{7}$$
,

it follows that

$$g = x \varphi(x)^{-4} \varphi(x^7)^4 \equiv x \varphi(x)^{24} \pmod{7}$$
,

and using this and the congruence (see Kolberg [6])

$$x\varphi(x)^{24} \equiv \sum_{n=1}^{\infty} n \, \sigma_3(n) \, x^n \pmod{7} ,$$

we conclude that

$$\sum_{1}^{\infty} c(7^{a}n)x^{n} \equiv -7^{a}(82)^{a-1} \sum_{1} n \, \sigma_{3}(n)x^{n} \pmod{7^{a+1}}.$$

The congruences refer to the coefficients of the power series in x.

Using the identity (2.1) and Lehner's proof for p=2,3,5, with slight modifications we get congruences connecting $c(p^a n)$ and c(pn), but the congruences are contained in the proofs of (1.5)-(1.7).

REFERENCES

- 1. H. F. Aas, Congruences for the coefficients of the modular invariant $j(\tau)$, Math. Scand. 14 (1964), 185–192.
- O. Kolberg, Congruences for the coefficients of the modular invariant modulo powers of 2, Univ. Bergen Arbok Naturvit. Rekke 1961, no. 16, pp. 9.
- 3. O. Kolberg, The coefficients of $j(\tau)$ modulo powers of 3, Univ. Bergen Årbok Naturvit. Rekke 1962, no. 16, pp. 7.
- 4. O. Kolberg, Congruences for Ramanujan's function $\tau(n)$, Univ. Bergen Årbok Naturvit. Rekke 1962, no. 11, pp. 8.
- 5. O. Kolberg, Some identities involving the partition function, Math. Scand. 5 (1957), 77-92.
- O. Kolberg, Congruences for the coefficients of the modular invariant j(τ), Math. Scand. 10 (1962), 173-181.
- J. Lehner, Divisibility properties of the Fourier coefficients of the modular invariant j(τ), Amer. J. Math. 71 (1949), 136-148.
- 8. J. Lehner, Further congruence properties of the Fourier coefficients of the modular invariant $j(\tau)$, Amer. J. Math. 71 (1949), 373-386.

UNIVERSITY OF BERGEN, NORWAY