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LENGTH FUNCTIONS IN GROUPS

ROGER C. LYNDON
1. Introduction.

Nielsen’s proof of the Subgroup Theorem for free groups [2, p. 31]
rests on an argument to the effect that a product of elements from a
free group cannot reduce to the trivial element, provided that the amount
of cancellation in forming the product of any three consecutive elements
is not too great. We seek here to isolate certain ideas underlying this
and similar cancellation arguments. To this end we consider a group @
equipped with a “length function”, assigning to each element g in @ as
length a non-negative integer |g|. A set of axioms is obtained, necessary
and sufficient for the function |g| to be the restriction to G of the usual
length function on some free group F containing G, or alternatively, of
the usual length function on some free product F (without amalgamation)
containing ¢. Our main result concerns the structure of an arbitrary
group G with a length function satisfying these axioms, and contains,
separately, the Nielsen Subgroup Theorem and the Kurosh Subgroup
Theorem [1, p. 17].

The core of our argument is an abstract reformulation of Nielsen’s
argument, adapted to the complications that arise from the possibility of
elements g such that |g2| <|g|.

Alternative approaches to this question are possible. If x and y are
words in a free group, there exist elements z,, y; and z such that x =2z,
y=1v.2, and zy-'=a,y,7!, without cancellation, that is, with

o] = loyl+ 1zl Yl = lgal+lzl, Jay7Y = Jed+ e

The amount of cancellation, that is, the amount of agreement between
x and y, is

2| = d(x,y) = =]+ |yl - ley=(].
Here we deal entirely with the numerical function d(z,y), and do not
assume that, with every pair of elements x and y, G contains their greatest
common right divisor z; in this connection we are led to introduce ideal
divisors. An alternative approach would be to take as primitive the
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operation of forming greatest common right divisors; with this it might
be possible to dispense with some of the metric properties of the length
function.

We note also that the assumption that the values |g| of the length
function are non-negative integers plays a very limited role; it is used
essentially only in establishing a well ordering of G with special properties
that enables us to define a generalized Nielsen basis (Section 5). A modest
illustration of this measure of flexibility is provided by the observation
that the axioms A1-A5 (or A0-A5) below are preserved in passing from
a function |g| to a function |jg|| defined by ||1||=0 with |g||=alg|+b
otherwise, for @ and b positive real numbers.

2. The axioms.

We consider an arbitrary group ¢, equipped with a function assigning
to each element x of G an integer |z|. We wish to reserve the notation
2™ for upper indices. Hence we avoid exponents, adopting the notation
2~ for the inverse of x, and write out xx for the square of . Define

d(x,y) = izl +lyl—ley~1];
note that d(z,y) is an integer or a half integer.
We shall be interested only in functions |x| satisfying the following
axioms:

Al. |z|=0 if and only if x=1;

A2. |z-|=|al;

A3. d(z,y) =z 0;

A4, d(z,y) < d(x,z) implies that d(y,z)=d(x,y);
A5, d(z,y)+d(xz—,y~) > || = |y| implies that z=y.

The content of Al and A2 is clear enough. In particular, they imply
that d(x,1)=0 and that d(z,y)=d(y,z). Axiom A3 is equivalent to the
“triangle axiom”: |zy—| < |x|+ |y|. Axioms Al and A3 imply that |z|=
d(z,x)20. Axiom A4 is a “‘triangle axiom’ of a different nature: the
two smaller of the three ‘“‘measures of agreement’” among three elements
are equal; in practice it often takes the form that d(x,y)=m, d(x,z)2m
implies d(y,z)2m. Axiom A5, relating agreement on the right with
agreement on the left, will be discussed later.

We derive four immediate consequences of these axioms, using, in
fact, only axioms A2 and A4.

(2.1) ProposrTION. d(2y,y)+d(%,y7)=y|.
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Proor. By definition, 2d(zy,y)=|zy|+|y|—|z|, and 2d(x,y~)=|x|+
ly~|—l2yl. By A2, ly~|=lyl.
Addition gives (2.1).

(2.2) ProposITION. d(%,y)+d(y,27) 2 |y|,

implies that
P loyel < el — [yl + 1 -

Proor. The hypothesis gives d(y,z7) 2 |y| —d(x,y~) while (2.1) gives
d(zy,y)=y| —d(x,y-). By A4 it follows that d(xy,z")2|y|—d(x,y).
Expanded, this last inequality becomes

ley| + |27 — |eyz| 2 2|yl - |2| —ly~| + |yl ,
which, with |y~|=y|, |2~|=]z|, gives (2.2).

(2.3) ProposiTION. d(2,y) +d(y,27) < |y|
implies that
d(xy,z7) = d(y,27) .

Proor. The hypothesis gives d(y,z~) < |y| —d(x,y~), while (2.1) gives
d(xy,y)=y| —d(z,y~). By A4 it follows that d(xy,z~)=d(y,2z").

(2.4) ProOPOSITION. d(x,y)+d(x~,y~) = |z| = |y|
implies that
l(xy)xy~)| £ |ey~| .

Proor. The hypothesis gives d(x,y)+d(y—,2~) 2 |y|, whence, by (2.2),
ley=2| = |2 =yl + x| = |a].
Now |zy—=z| < |z| gives
2d(xy~, ") = |ley~|+ x| - oy ~z| 2 |ey] .
Also, 2d(z,y) = x|+ |y|— |xy~|. Since |x-|=|x|, addition gives
2d(zy~, ") +2d(x,y) 2 2|z| .
Now (2.2), applied to zy—, z, and y-, gives
ley~zy~| = lwy~| =]+ 1y~ = |ey~| .
The content of (2.4), which was obtained from A2 and A4 alone, is
very close to that of Axiom A5. For this reason it seems worthwhile to
show that A5 is nonetheless independent of Al1-A4. For this purpose

we take @ to be any group containing a non-trivial subgroup H of index
two. Let m and n be integers, with 0 <m <n. Define |1|=0; || =m for
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xeH,z+1;and |x|=nfor x ¢ H. Clearly Al and A2 hold. We find that
d(x,1)=0, d(z,x)=|z|, and that, for 1, z, y all different, d(z,y)=4m if
either  or y is in H, while d(z,y)=n— }m > }n otherwise. It follows
that A3 and A4 hold. However, A5 fails, since, taking », y ¢ H with
z+y, we have d(z,y)+d(x~,y")=2n—m>n=|x|=|y|. Here (2.4) tells us
only that |xy—xy—|<|xy—|, that is, that xy— is non-Archimedean in a
sense defined below.

We call an element x such that |x| < |xz| Archimedean, in view of the
following proposition (where, exceptionally, superior numerals indicate
powers).

(2.5) ProrposiTION. The lengths |x™| are unbounded if and only if x is
Archimedean.

Proor. Suppose that x is Archimedean. Then d(z,x~)=d < }|z|, and,
since +1, |z|= 1. For n=1, assume inductively that d(z*,2~)=d and
lz*|zn. From d(x*z-)+d(x,x2)=2d<|z| it follows by (2.3) that
d(x"*+,2~) =d(x,2~) =d; moreover,

et = |an| + |z|—2d > 2" = n,

whence |z**+1|2n + 1. This completes the induction. Suppose now that
z is not Archimedean. If x has finite order, then the finite set of integers
|x"| is bounded; we may suppose then that a has infinite order. Now
|x?| < || would give

d@,x) > $f, d@z)+d@,z) > |2 = |z,
and, by A5, x=x-, hence 2?=1, contrary to hypothesis. For n2>2,
assume inductively that |x|=|2?|=...=|z". Then

d(@,z7) +d(@,x7) = 2| +ilz| = ||,

whence (2.2) gives |z”~lxx|<|x"1|—|x|+ x|, hence |z*t!|<|x|. But
|| < || would give

d(@*,z7) = d(z,z=") = §{|z"| + x| — [2"*[] > }a],
hence d(x®,x~) + d(x,2"") > |z| = |2"|, and, by A5, z? =z, "+ =1, contrary
to hypothesis. Thus we conclude that |x*+!| = |x|, completing the induc-
tion.

Let A0 be the Archimedean axiom:

AO0. z+1 implies that |x| < |xx|.
Let Al’ be the following weakened form of Axiom Al:
AYl. |[1]=0.
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(2.6) PrOPOSITION. The set of axioms A0,Al,. .. A5 is equivalent to the
set A0, Al’, A2, A3, A4.

Proor. Clearly the former set implies the latter. For the converse,
assume A0, Al’, A2, A3, A4. To prove Al, we must show that |z|=0
implies z=1. If |x|=0, using Al we have d(z,1)+d(z~,1)=0+0=0=
|z|=]1]; by (2.4), which follows from A2 and A4, we have |xz|<|x|.
Then by AO it follows that x=1. To establish A5, assume that
d(x,y) +d(x=,y~)>lx|=|y|; by (2.4) again we have |(zy~)(xy~)| < |vy~|,
which by A0 implies zy—=1, hence z=y.

If F is the free group on a set X of free generators, then the associated
length function x| assigns to each x in F the length of the unique reduced
word, in the generators from the set X, representing x.

(2.7) ProposiTiON. The length function associated with a set of free
generators for a free group satisfies Axioms A0, Al’, A2, A3, A4. It also
satisfies the following condition:

CO: d(x,y) ts always an integer.

Proor. A0 becomes obvious upon writing a word x as the conjugate
of a cyclically reduced word. Then d(z,y) is the length of the longest
sequence of letters on the right ends of the (reduced) words where x
and y agree. Al, A2, A3 and CO are immediate. A4 follows from the
observation that if both x and y agree with z in their last m letters, then
they agree with each other in their last m letters.

If F is the free product of a family of pairwise disjoint subgroups F,,
then each element z in F has a unique representation as a product
X=2x,%y...%,, where each z;+1, each z; is in some F,, and where no
consecutive z; and x,,, are in the same F; the associated length function
assigns to x the value |z|=n.

(2.8) ProrosiTiON. The length function associated with a free decompo-
sition (without amalgamation) of a group satisfies Axioms Al, A2, A3, A4,
A5. It also satisfies the following two conditions:

Cl. if z=+1 and |xz| < |z|, then |x| is odd;
C2. for mo x is |ax|=|x|+1.

Proor. If elements x and y have normal representations x =x,x, ...,
and ¥=9,Ypu-1---Y1, let k be the greatest integer such that x;=
Yise « X =Y; if n,m>k and z,,, and y,,, lie in the same free compo-
nent (but are not equal) then d(z,y)=k+ }; otherwise d(x,y)=k. With
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this, the verification of A1, A2, A3, A4 is routine. For A5, the hypothesis
that d(z,y)+d(xz—,y~)> || =|y| implies (using [m] for greatest integer
in m) that [d(z,y)]+ [d(z~,y~)] 2 || =|y|, whence the number of letters
in which x and y agree on the right end plus the number in which they
agree on the left end add up to a number not smaller than the common
length of z and y; it follows that x and y are identical.

For C1, we observe that the non-Archimedean elements z, satisfying
|xx| < |%|, are just the conjugates of elements from the free components
F,; thus, if x+1, it has normal form

T = X3y .. Ly Ty . Xy Xy~

and length |xz|=2k+1.

For (2, we may reduce consideration to the case that x is cyclically
reduced, x=w,x,_;...%;. Then, according as x, and x, lie in the same
or different free components F,, we have |xx|=2n or |xx|=2n—1. In
the second case, |xx| = x|+ 1 implies n =2, whence & =x,x, with x, and «,
in the same component, so that x=x,r; is not in normal form.

It is easy to see that CO is not a consequence of A0-A4, and that neither
of C1 and C2 is a consequence of Al1-A5 together with the other. In
this limited sense, these conditions (which we shall not refer to again
until Section 8) are necessary. However, their rather superficial nature
is indicated by the following observations. First, if any length function
|z| on G satisfies A1-A5, then the new length function |z|, = 2|x| will also
satisfy A1-A5, and CO and C2 in addition. Second, if |z| satisfies A1-A5,
the new function defined by setting |x|,=2|x|+ 1, except that |1|,=0,
will also satisfy A1-A5 and C1 and C2 in addition. Moreover, the set of
Archimedean elements is the same under all three length functions.

3. Ideal divisors.

We define the length |U| of any non-empty subset U of G to be the
smallest value of d(x,y) for elements x and y of U. Given any z in G,
it follows by A4 that if d(z,x) 2 |U| for any single « in U, then the same
ig true for all z in U. We write (U) for the set of all z such that d(z,z) 2 |U|
for some (and so all) x in U. A set U is an ideal if (U)="U.

Clearly every pair of elements, x and y, generate an ideal U= (x,¥),
with |U|=d(x,y); and, conversely, every ideal is generated by two of its
elements (not necessarily distinct). The unit ideal is (1)=(@, with length
|G|=0.

In anticipation of Section 8, we note that a free group or free product
is a “‘principal ideal group”’ in the sense that every ideal there is generated
by a single element.
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If two ideals, U and V, have non-empty intersection, then one is in-
cluded in the other; in fact, U<V if and only if |V|<|U|. To see this,
taking # in UnV, we observe that U is characterized by the condition
that d(z,x) 2 |U|, while V is characterized by the weaker condition that
d(z,z)2|V]|.

It follows that, if U is any proper ideal, U+ @, there is a smallest
ideal U’ properly containing U. Since then |U’|<|U|, and the |U] are
non-negative integers, there is associated with U a unique chain of
ideals C(U): U,U',U",...,UXD), ending, for some k(U)=0, with
U —q.

We start with any well ordering, U<V, of the set of all ideals, and
derive from it a new well ordering, U < V, with certain special proper-
ties. First, we well order the chains C(U) by the inverse lexicographical
order based upon the order U< V. Then we define U <V to hold just
in case C(U)<C(V) under this order. Thus U <V if and only if some
Ur=Ve 0=p, qskU), E(V), and either p=0, ¢>0, or else p, ¢>0
and Ur-1L Va1,

For each x in G, we define U(x) to be the smallest ideal U such that

€ U and |U| £ }jz|. The crucial property of the well ordering of ideals
is then the following.

(3.1) ProrosrrioN. If |y| < |2l, [y'| s |2'|, ([U@I=IU@E), Uly)<Uy),
and x € U(y), ' € U(y'), then U(x) < U(x').

Proor. U(y)?=U(y')? for some p,gq=0. Now p=0 and ¢>0 is im-
possible, since |U(y)|=|U(y’)]. Thus p, ¢>0, and U(y)?-'<U(y’)? L.
Now ze U(y) and |U(y)| £ }|y| < }|=| implies that U(y)=2 U(x), hence
U(y)=U(x)* for some A=0; similarly U(y’')=U(z')* for some k2=0.
But now we have U(x)**?=U(z')*+4, with h+p, k+¢>0, and
U(x)r+r-1<L U(z'Ye+a-1, whence U(z) < U(x').

4. Non-Archimedean elements.

Let N be the set of non-Archimedean elements z, that is, elements x
such that |xz| < |z|. We define a relation z~y between elements of N
to hold if and only if |xy—| £ |z|=y|.

(4.1) ProposiTION. The relation x~y is an equivalence relation on N.

Proor. It follows immediately from the definition that the relation is
reflexive and symmetric. We note that, for elements of N, the relation
x~y is equivalent to the condition d(x,y)= }|x|=14[y|. To establish
transitivity, assume that z~y and y~z, that is, that d(x,y), d(y,2)2
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x| =3%ly|=3|z|. By A4 it follows that d(x,z) = }|x|=3}[|, that is, that
T~z

For each non-Archimedean element z in N, let N(x) consist of the
equivalence class of x under the relation « ~ y, together with the element 1.

(4.2) ProrosiTiON. If = is in N, then N(x) is a group.

Proor. We observe first that  in N implies, by definition, that
|zx| £ || = |z~|, hence that x~z-. It will now suffice to show that if
z,y+1, if x+y, and x~y, then 2y-~y. From x~y we have z-~y-,
that is, d(z,y), d(x—,y~)= }|x|=1%|y|- If either inequality were strict,
addition would give d(x,y) +d(x~,y~) > |x| = |y|, whence by A5 we should
have z=y, contrary to hypothesis. Thus both inequalities are in fact
equalities, and addition gives d(x,y)+d(x~,y~)= || = |y|, which by (2.4),
gives |(zy~)(zy~)| < |zy~|, hence xzy~ in N. Finally, d(x,y)=}|y| implies
that |xy—|=|z|=y|, whence, by definition, zy—~y.

The group N(1) clearly consists of the element 1 alone. It is also
possible that some N(x) consist of 1 together with a single other element
z, of order two. In any case, from the definition of the groups N(x), it

is clear that distinct groups N(x) and N(y) have trivial intersection.
We note two corollaries of the above.

(4.3) CorOLLARY. If x~y and x+y, then d(x,y)=3}|x|, Ux)=U(x"),
and |U(z)| = }|z|.

(4.4) CoroLraryY. If U(x)=U(x") and |U(x)| = }|x|, then x is in N.

5. A generalized Nielsen basis.

We wish to impose on G a well ordering, x <y, that satisfies the fol-
lowing conditions:

(5.1) |x| < |y| itmplies that x<y;

(5.2) |z|=|y| and U(x)< U(y) implies that x<y;

(5.3) |z|=ly|, U(x)=Uly), and U(z~)< U(y~) tmplies that x<y;

(5.4) all the elements in an equivalence class of N under the relation x~y
occur consecutively, and, if |x|=|y|, Ux)=U(x")=U(y)=U(y"),
while xe N, y ¢ N, then x<y.

It is clear that one can realize the first three conditions; moreover,

since ¢~y implies d(x,y) 2 }|z| = }|y|, we have |z|=|y| and U(x)=U(y),

while x~2~ and y~y- gives also U(x~)=U(z), U(y~)= U(y): the fourth



LENGTH FUNCTIONS IN GROUPS 217

condition is compatible with the first three. We suppose henceforth
that G is well ordered by a fixed relation x <y with these properties.

For each z in ¢ define G(x) to be the subgroup generated by all y in G
such that y<xz. Define X to be the set of those elements x in G such
that x« ¢ G(x). We note in particular that, since 1 € G(x) for all z, as a
matter of definition, it follows that 1 ¢ X.

(5.5) ProposiTION. The set X generates Q.

Proor. Let H be the subgroup generated by X. If H is not all of G,
let z be the first element of G not in H. Then ye H for every y<u,
whence G(x) < H. Since xz ¢ H, we have x ¢ G(x). But then z € X, whence
x € H, contrary to the choice of x.

In the general case, under Axioms Al, A2, A3, A4, A5, but without
the Archimedean Axiom A0, X will not be a free set of generators for @,
and hence will not satisfy the condition on the amount of cancellation
in a triple product upon which Nielsen’s proof of the Subgroup Theorem
rests. However, it will satisfy certain weaker conditions, from which
we shall derive our main results.

Define Y to be the set consisting of all elements x and - forxe X — N,
together with all elements x such that x ~ 2’ and x4’ for some 2’ € XnN.

For arbitrary x € G, we shall write x for the earlier, in the order in ¢,
of x and z—; (or == in case xx=1).

(5.6) LEMMA. If x,y € Y and x+y-, then |xy| = |x|, |y|.

Proor. If x~y, the conclusion follows from (4.3); we assume hence-
forth that x~y. By symmetry we can suppose that Z=<y. It follows by
(5.1) that |x| <|y|. Hence it suffices to show that |zy|= |y|.

We may suppose that Z<g. That x=y- is excluded by hypothesis,
whence Z=§ implies z=y. Unless |y| < |zy|, as desired, we should have,
from z=y, that |xx| < |z|, hence x=y e N, and x~y, contrary to hypo-
thesis.

If y e Y, then either 7€ X or else y~y’ for some y' € X, y'+y.

Suppose first that 7€ X. Then |xy| < |y|, together with Z <g, would
imply that xy,z € G(7), hence § € G(§), contrary to j € X. Thus, in this
case, we have |xy|= |y|.

The case remains that y~y’ for some y' € X, y'+y. Since we have
x~y, while y ~y’, it follows that x+y'~, and, since y' € X, we conclude
from the previous case that |zy'| = |y'|=|y|. If |zy'| > |y|, then d(x,y'~) <
4|x|, and since, by (4.3), d(y~,¥'~) = }|y| = }|x|, we conclude by A4 that
d(zx,y-) < }|x|, that is, that |xy|>|y|]. We may suppose then that
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lzy'|=lyl. If |x| <l|yl|, then from d(z,y )= $|x| and d(y~,y'~) =}yl > 4l
we conclude by A4 that d(x,y~)=}|z|, hence |zy|=|y|.

The case now remains that |xy’'|=|y’'|=|z|. Since y’ € N, by (4.3) we
have U(y')=U(y'~) and |U(y’)|=4%ly|. Now z~y, y~y’, T<§ implies by
(5.4) that z<y'. Since |z|=|y| and U(x)=U(y’')=U(y’~), this implies,
by (5.1), (5.2), and (5.3), that U(z~)<U(zx). Now U(x)=U(z-), with
|Ux)|=|U(y")|=%ly’'|=}|x| would, by (4.4), imply that xe N; with
y' €N and |vy'|=|z|=|y’| this would imply that z~y’, hence z~y,
contrary to hypothesis. We conclude that U(x~) < U(z).

Now
d(zy",y') = =y’ |+ 1y'| = |=l] = dlay’| = dl|,

whence U(zxy')=U(y’). Similarly,

d((xy')~27) = $llay'| + |2 = |y']] = lay'| = 3=,

whence U((zy’')")=U(z~)<U(y’). Since |zy’|=y’|, it follows from (5.1),
(5.2), and (5.3) that a2y’ <y’. Since also ZT<y’, we have zy', z € G(y'),
whence y’ € G(y’), contrary to y' € X.

This completes the proof of Lemma (5.6).

(5.7) LEMMA. If 2,y € Y and |zy| = ||, then U(y~) < U(y) and |U(y~)|=
Uy)| =14yl

Proor. If 7 ¢ X, then z~z' for some ' € X, ' +x. From |zy|=|z| it
follows that d(z,y~) = }|y|, whence, by (5.6), |y| < |z|. By (4.3), d(z,2")=
$lz| 2 #|y|. It follows by A4 that d(z',y~) = }|y|, whence |z'y| < |z|, and,
by (5.6), |#'y|=|z'|. Thus, replacing x by «’ if necessary, we can suppose
that z e X.

Now |zy|=|z| gives

d(w,y~) = Hizl+ Iyl —ley!] = iyl ,
whence |U(y~)|=4|y| and x € U(y~). Similarly, from

d(zy,y) = $lleyl+ 1yl - |=]] = $ly|

it follows that |U(y)| = }|y| and zy € U(y). We assume now that U(y) <
U(y~) and derive a contradiction. By (3.1), since |y| =< |z|=|zy|, and
xy e U(y), xe U(y~), it follows that U(xy)< U(x). On the other hand,

from
d((xy)=,27) = eyl + |zl —lyl]] = || —}lyl = 4|z = =yl ,

we conclude that U((xy)-):U(x—). It now follows from (5.1), (5.2),
and (5.3), that (zy)<Z.
Now y==x, with |xy|=|z|, would imply that y € N, which, by (4.3),
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contradicts U(y) < U(y~). Also, y=2~ would give |z|=|xy|=|1|=0 and
z=1, contrary to x € Y. This establishes that §+%. Next, §<Z, to-
gether with (xy) <7, would give xy,y € G(Z), hence Z € G(Z), contrary to
ze X. Finally, Z<7, together with (xy)<Z, would give zy,x e G(¥),
hence 7 € G(y), contrary to ¥ € X. This completes the proof that U(y) <
U(y~) is contradictory, and establishes Lemma (5.7).

(5.8) Lemma. If z,y,2€ Y and |zy|=|z|, |yz|=|2|, then y € N.

Proor. From (5.7) and its symmetric counterpart we have U(y~) <
U(y), U(y)= U(y~), whence U(y)=U(y~), and also |U(y)|=4}|y|. It fol-
lows by (4.4) that y € V.

(5.9) LEMMA. Let z,y,2€ Y, with y~x, y~z, and with |xy|=|z|, |yz|=
|2|. Then |xyz| = || —|y| +|2|.

Proor. The hypotheses |xy|=|z| and |yz|=|z| are equivalent to the
equations d(x,y~)=d(y,2")=4}|y|. Using (5.6) we conclude that |y|<
|z, |2|. Using (2.2), from d(x,y~)+d(y,2~)=|y| we conclude that |zyz| <
|x] — |yl + |2|. We assume henceforth that |xyz| < |z|—|y| + |2|, and it will
suffice to derive from this assumption a contradiction.

Using (5.8) we conclude that y € NV.

We next justify the assumption that € X, where  is the earlier, in
the well ordering of G, of x and z—. If, in fact, Z ¢ X, then x ~ 2’ for some
2’ € X,z +x. Now |y|+ ||, for if |y| = |z|, then x,y € N with |xy|=|z|=|y|
would imply y~x, contrary to hypothesis. Since we had |y| < |z|, we
conclude that |y|<|z|. Now d(z,y~)=13}ly|, while x~z' implies that
d(z,2') 2 §|z| > §|y|; by A4 we conclude that d(x',y~)=}|y|, that is, that
|x'y|=|z'|. The assumption that |zyz|<|x|—|y|+ |2| implies that

d(x,(y2)7) = x|+ lyzl = leyz]] = 2]+ 2] - layz]] > 4y .
From this with d(z,z’) > }|y| we conclude by A4 that d(x’,(yz)-)>§lyl,
hence that |x'yz| < |x’| — |y| + |2|. Further, y ~x together with &~z im-
plies that y ~2’. Thus z’, in X, satisfies all the original hypotheses on z,
and, replacing by 2’ if necessary, we can assume henceforth that z e X.

The hypotheses and conclusion of the lemma are unaltered if we
replace z,y, and z by 2-, ¥y, and z-. Thus we may conclude that zZ € X as
well as Z € X. Moreover, by symmetry, we can suppose that 2= 7.

We now treat the case that z=x-. The assumption that |xyr—|<
|x] — |y| + |z| implies as before that d(x, (yx~)~)> }|y|. Since also

d(@=,yz~) = $[lz|+|yz~| - |z"zy~|]
= $[la| + || = yl]
= |2l -3yl ,



220 ROGER C. LYNDON

we have
d(@=,yx-)+d(z,(yz")~) > |x| = |x-| = |yz|,

and from A5 we conclude that x~=yx~, whence y=1, contrary to the
hypothesis that y € Y. This completes this case, showing that Ze X,
ye Y, y~z, and |xy|=|yx—|=|x|, implies that |xyx~1|=|x|—|y|+ |x|.

We turn now to the case that z=x. From the assumptions that
zeX, ye Y, y~z, |xy|=|yx|=|x| and |ryx|<|x|—|y|+|z|, we must
derive a contradiction. Observe that these assumptions remain un-
altered if we replace « by z~ and y by y~. From d(z,y~) =}y, d(y,y~) =
3|yl we conclude that d(y,x)=}|y|, hence |yx—|=|x|, so that we may
infer, from the case z=x- treated above, that |xyx—|=|x|— |y|+ |z,
whence d(ry,z)=1%|y|. The assumption that |zyx|<|z|—|y|+ |z| gives
d(xy,xz~) > |y|. By A4, it follows that d(x,2~)=}|y|. Now |y|=|z| would
give d(x,xz~)=4|x|, hence |rz|=|z|, x e N, and, with ye N and |zy|=
|x| = |y|, would give y ~x, contrary to hypothesis. Thus we may assume
that |y| < |x|.

Continuing the case z =1, we next show that the assumption d(xy,x~) >
3|z| implies U(x) < U(x~). From this assumption, together with the equa-
tion

d((wy)~2) = $llwyl + 2| - ly—22(]
= |2+ || - 1yl]
= |e[—}ly| > dl2|,

we conclude by A4 that d(zy, (zy)~) > }|x| = }|ay|, whence |zyxy| < |zy|
and xy € N. (In fact, by A5, it follows that xyxy=1.) The inequalities
above now give U(zy)= U((xy)‘): U(z~). Now U(x~) < U(x) would give
zy <%, hence y,xy € G(Z) and so Ze G(Z), contrary to ze X. Also
U(x~)=U(x) proves impossible. First, x € N together with zy € N and
d(zy,x~) > }|x| = }|xy| implies |xyx| < |xry| = |x|, whence zy ~x and so y~x,
contrary to hypothesis. Therefore x ¢ N, while 2y e N. But U(xy)=
U((xy)~)=U(x)=U(x~), whence it follows by (5.4) that xy <7, leading
to a contradiction as before. We must conclude that U(x) < U(z-).
We now show that the alternative assumption, d(xy,z~)=< }|z| also
implies U(z)< U(z~). Write d(zy,x~)=d>}|y|]. We have, as before,
d(zy,x)=d(x,x")=4}ly|, and also U(z~)=U((xy)"). Now U(xy)< U(x)
would imply y,zy € G(%), hence Z € G(Z), contrary to x € X. Moreover
U(zxy)=U(x) is impossible, since d(zy,x)=}|y| <d, while xy belongs to
the ideal U,=(xy,z~) of length d < }|xy|. Therefore we have U(xy)>
U(z). Now the chains of ideals C(z), C(x~), C(xy) all agree, reading from
right to left, up through a common ideal V with |V|=1}ly|, and C(z-)
and C(zy) agree further up through the ideal U; That U(x)< U(xy)
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means either that the chain C(x) has no further members to the left of V
(while C(xy) does), or else that the next member W of the chain C(x) to
the left of V stands in the relation W< Z to the next member Z of C(xy)
to the left of V. Since Z is also the next member of C(x~) to the left of
V, this implies that U(x) < U(x~).

We have now proved, under the assumptions for the case z=uz, that
U(x)< U(xz~). But it was noted that the assumptions hold equally with
x replaced by #— and y by y~. Thus we may conclude equally that
U(x~) < U(z), providing a contradiction.

We next examine the case that Z<y. Since we had |y| < |z|, this im-
plies |y|=|2|. If ¥ ¢ X, then y~y' for some y' € X, y'+y. From y~u,
y +~ 2z, it follows that ¢y’ ~ =z, y' »z. From |zy|=|z| we have d(x,y~) = }|y|.
Since y'~y, y' +y, gives d(y,y' ~)=3}ly|=4%ly’|, we conclude, using A4,
that d(x,y’'~) 2 |y’| and hence |zy’| <|x|. Since y’~z, it follows by (5.6)
that |zy'| =|x|]. We have symmetrically that |y'z|=|z|. Thus ¥y’ satisfies
all the same hypotheses as y, and, replacing y by ¥’ if necessary, we can
suppose that §e X. From d(y,z~)=3}|y|=134/2] and y€ N we conclude
that U(y)=U(y~)=U(z~), while y~z implies that U(z)+ U(z~). From
z <y we infer that U(z) < U(z~). Now

d(yz,2) = Izl +[2[—[yl] = %zl = byl

gives U(yz)=U(z), and d((y2)~,y~)=14lyl=1}lyz| gives U((y2)")=U(y").
But U((yz)—) =U(y~) together with U(yz)=U(z)< U(y) implies that
yz<y. Thus z,yz € G(§), whence ¥ € G(7), contrary to § € X.

We have shown that zZ <y is impossible; since we have also that y ~z,
we may conclude that y <z. Write

d = d(x,(y2)7) = dlxy,27) = 2|+ 2| — |wyz]] > dlyl .

If d>}z|, that is, |x|+ |2|—|zyz| > |2|, then |zyz|<|x|. Since y<zZ<7,
this gives y,Z,zyz € G(Z), hence % € G(Z), contrary to z € X. We may
suppose henceforth that d < }|2| < }|z|. The two ideals U, = (,(yz)~) and
U,=(xy,z~) have the same length, |U,|=|U,| =d.

We show that U, =U, is impossible. This equation would imply that
d(x,xy) = |U,| =d > }|y|. Together with

d(@~, (xy)~) = =+ |z~ [y]] = || -3y,

this would give
d(x,xy) +d(x~, (zy)") > x| = |ay|,

whence, by A5, x=xy and y=1, contrary to ye Y.
If U,<U,, by (3.1) we should have U(xy) < U(x). It was seen that
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d(z~, (xy)~) = |z| — |yl 2 }|x|, whence U(x~)=U((xy)~). It follows that
xy <Z%. But then y,zy € G(x), whence Z € G(x), contrary to z € X.
Finally, if U,<U,, it follows that U((yz)~)<U(z~), while d(yz,z)=
|z| — 3|y| = $|2| implies that U(yz)= U(z). Therefore one has yz <z, hence
y,yz € G(z) and Z € G(z), contrary to ze X.
This completes the proof of (5.9).

6. The cancellation theorem.

An essential element in the proof of the Nielsen Subgroup Theorem is
that if, in forming the product of a sequence of one or more non-trivial
elements of a free group, no factor cancels entirely into the two adjacent
factors, then the product cannot be trivial. We paraphrase this in the
following lemma and corollary.

(6.1) LEMMA. Let xy,z,,...,x, be elements of a group G satisfying
Axioms A1-A5. Assume that
(6.1a) Az, 27 )+ A(x,07) < |2y, all © with 1<i<n.

Then it follows that

n—1

(6.1b) |21y . . . @, = ;1 || — 2_§d(xi,xi+l—) .

Proor. The assertion (6.1b) is trivial for n=0,1,2; assume n=3.
Define p,=x,%,...x; for 1<i<n. For ¢=1 the equation
(6.1c) APy ®in7) = AUX;,%5417)
is trivial. Inductively, assume (6.1c) for some ¢, 1S¢<n—1. From
(6.1a), with indices increased by 1, we have
AP i417) + (@41, i427) < [g4al -

By (2.3) it follows that d(p;41,%;.07) =d(®;11,%;407), that is, that (6.1c)
holds for 4+ 1 in place of ©. It follows that (6.1c) holdsforall¢,1<¢<n—1.
Summing over this range, and multiplying by 2, gives

n—1

n—1
zl(lpi|+|xi+ll—|pi+ll) = 2‘21‘1(%,33“1_) .
t= =

Since the left member reduces to

n n
1P1l+ 2 103 = |Pal = l21] + 2 |2 = |Pal ,

t=2 =2

the equation (6.1b) results after transposition.
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(6 2) CoroLLARY. Under the hypotheses of Lemma (6.1), if n=3, then
1%y . .. X, F 1.

Proor. Write d;=d(x;,x;.;7), 1<i<n. From (6.1a) we have

n—1

pREA >d+2zd +d,_, .

=2

By (6.1b) this gives
lpnl > lel + lxnl _dl_dn—l .

Now (2.1) with A3 implies that, for any z==y, d(z,¥) < |y|; since d(u,v) =
d(v,u) and |u—|=|u|, this gives d, < |x,| and d,_, < |z, |, hence |p,| > 0.
Roughly speaking, the condition (6.1a) ensures that, after all cancella-
tion between adjacent factors has been carried out, there will remain
some part of each x;, 1 <7 <n to act as a barrier against further cancella-
tion between z; ;, and z;,,, and hence against any further cancellation
whatsoever. In fact, (6.1a) is equivalent to the condition that

[T 1% 1q] > (@] — 2] + 24 44] -

In the situations with which we shall deal, we have only the weaker
condition (see Lemma (5.9)) that

(6.3a) %123 4a] 2 1] = 1] + |24 for 1<i<n.

This condition, although not ensuring that any barrier remains from x;
to provide against cancellation between x;_, and x; ,, does assert that
no such cancellation takes place; however, (6.3a) in itself fails to prevent
cancellation between more remote factors, and to secure (6.2); this is
illustrated by the product (p—q)(¢7r) (r=s) (s~p), in the free group on
generators p, ¢, r, and s.

In the situations to be considered here, as with the Nielsen Theorem,
one has the additional condition on consecutive factors, that

(6.3b) @il 2 |2, 2l for 1=i<n;

but the example just cited shows that even (6.3a) and (6.3b) together
do not suffice for the desired conclusions.

In fact, we have yet a further condition (6.3c), that equality in (6.3a)
cannot occur for two consecutive z;, x;,;. That (6.3a) and (6.3c) do not
suffice to secure x,z, . . .x, + 1 is shown by the product (pgr) (r—s) (s—q-t)
(t-p~), in the free group on generators p, g, r, 8, and t. But the conditions
(6.3a), (6.3b) and (6.3c) together do suffice for our purpose. We turn to
the proof of this fact.
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(6.4) THEOREM. Let x,,%,,. . .,x, be non-trivial elements of a group @
satisfying Axioms Al-A5. Assume that

(6.4a) A@,T417) S 3T, Hoal  for 1si<n;

(6.4b) d(x;_1,2;7) =d(x;,%;.17) = }|;| does not hold for any two consecutive
factors xl ;

(6.4c) the equation of (6.4b) implies |w;_1%x;q| = |2;_q1| — |25 + %44
Then (6.1b) holds, and xx, ...z, +1 if n=1.

Proor. We first remark that (6.4a) implies that
(6.4d) d(x;_q, 27 )+ d(xp2,,7) S |z for 1<i<nm.

An element z; will be called singular (relative to its position in the prod-
uct) if, in (6.4d), equality holds. Then (6.4b) says that no two consec-
utive factors x; and x;,, are singular. We observe that the theorem is
trivial for n <3, whence we may assume n=3. As a consequence of the
definition, neither z; nor z, can be singular. If z;,2,,...,z, are the
non-singular z;, in order, then m>2. If some z;=z,, and x;,, is non-
singular, or ¢=mn, then we define u;=z;=2;; if i <n and x;,, is singular,
then we define u;=xx;,,. Evidently p=x,...2,=uuy...u,. If
m =2, we have p=ux,x,x;, where z, is singular, and, by (6.4c),

me

Il = |@1] = [@] + |205] = |2 + [25] + |23] — 2|,
= 2]+ |25] + [203] — 2d(2y, 57) — 2d(9, 757) ,

80 that (6.1b) holds. Since (6.4a) gives |x,| =d(xy,%,~) < |2,|, While z;+1
gives |z;| >0, we have |p|=|z;| — |&,| + 23] > 0, and it follows that p+1.
Thus we may assume m = 3.

Our aim is to establish (6.1a) for the product of u,,u,,. ..,%,,. For this
we shall show that, writing d;=d(u;,%;,,~), we have always d, < }|u,],
$lu; 4, and that d;=d,,,=}|u;,,| is impossible. To simplify notation,
we write w; =2y, u;,;=2w, 4;,.,=s, where z, 2z, s are non-singular and
where y, w, t are either singular or trivial. From (2.3), since z and s are
non-singular and d(zy,2~)=d(y,2~) for singular y, as a consequence of
the assumptions, d, =d(zy,z~) and d,, =d(2w,s~). Singularity or triviality
of y and w implies that |xy|=|z| and |yz|=|z|=|2w|=|u;,,|. In case
y=1, (6.4a) gives d,=d(x,2") < }|2| = }|u;,,4|. If y=+ 1, whence y is singular,
from (6.4¢) and (6.4a) we have

d; = d(zy,z7) = $[ley|+ [z — (|2 - ly| + [2[)]
= 3yl = Hy2l = dlef = Hugl.
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Thus d, < }|u,;,,|, and, since d(xy,z*):d(x, (y2z)~), a symmetric argument
shows that d,; < §|u,].

If y=1, the equality d,=}|u;,,| = 3}|2| becomes d(x,2~)=}|2| where x
is now the member of the sequence x,,...,x, immediately preceding z.
If y+1, d;=3%|u;,,| implies by the chain of inequalities above, that
lyz|=|y| and hence d(y,2~)=4}2|, where y is now the member of the
sequence &y,...,r, immediately preceding z. Thus, if z=x,, d,=}|u,; 4|
implies that d(x;_y,,~) = }|z,|. Symmetrically, d,,, = |u,,;| implies that
d(xy, %, ,,7)=3%lxp|. In view of the fact that z=ux, is non-singular,
d(x,_y,2,71) =d(xp, 2, ,7) = 4|2 is impossible, whence d;+d; ., <|u;,|.
By Lemma (6.1) and Corollary (6.2) it follows that p<1 and then

m m—1
Ipl = 3 | =23 d;.
i=1 i=1
From this equation we must obtain (6.1b). From the fact that d,=
d(ug,u; 17 )=d(xy,27), it follows, if y=1, that |u,| —2d,=|z|—2d(z,z").
It remains to show that, if y41, whence y is singular, that
|ug| — 2d; = ||+ |y| — 2d(2,y~) — 2d(y,27) .

Now |u;| = |xy|=|z|, and

2d; = (lwy|+ 2| — leyz]) = (|| + 2] — (| = |y| + [2))] = ly]

whence |u;| —2d,=|z|—|y|. On the other hand, d(x,y)=d(y,2")=3}|y|
implies that

||+ [y| — 2d(x,y~) — 2d(y,27) = ||+ |yl - [yl -yl = |l=[—y| .
This completes the proof of the theorem.

7. The theorems of Nielsen and Kurosh.

Let A" be the family of all those non-Archimedean subgroups M of
G that meet X, that is, of all M = N(x) for some x € XnN. Let &/ be
the family of all the cyclic groups Z = Z(x) generated by an Archimedean
element of X, that is, for x € X —N. Let ¥ be the union of these two
families: ¥=A"u .

(7.1) MaiN THEOREM. The groups of the family 4 have pairwise trivial
tntersection. The cyclic groups Z(x) € & are infinite cyclic groups. The
group G is the free product of the family 4 of subgroups.

Proor. It clearly suffices to establish that, for =1, a product
P=2,%,. .., is not trivial, p =+ 1, provided the factors ,,x,,. . .,, satisfy
the following conditions. None of the x;=1, and each x, either belongs

Math. Scand. 12 — 15
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to some M = N(z) from A", or else is the generator x of some Z=Z(x) in
&/, or the inverse x— of such a generator xz. Moreover, no adjacent fac-
tors z; and x;,, belong to the same subgroup M in A", nor are they, in
one order or the other, the generator « of some Z=Z(z) in &/ and its
inverse x~. More simply, this requires that all the z;€ Y, and that,
for all ¢, 15i<m, ;~x;,, and x;+x;,,"

Let p then be the product of elements x,,%,,. . .,x,, for n > 1 satisfying
these conditions.

From these conditions it follows first by (5.6) that condition (6.4a)
holds:

d(xg,2;0,7) S 3oyl 3ol foralli, 15i<n.

Suppose next that some z; is singular, in the sense that d(x;_;,x;,”)=
d(x;,x;,7)=3%|x;|, or, equivalently, that |z, ,z;|=l|x,_;| and |xx,,,|=
|;44]. Then, by (5.8), x;€ N. Suppose now that successive x; and
x,,, are singular; then x;,z;,, € N and |vx, | = |2, with |zx; | =]|z,|;
then, by definition, x;~; ;. Since this is contrary to our hypothesis
on the z;, we have established (6.4b), that no successive z; and z,,, both
can be singular. Finally, (5.9), with z, y, and z replaced by x,_,, x;, and
x,,; establishes (6.4c), that, if x; is singular, then

€ 1% 1] = [@ga] = |2 + 124 44] -

Thus all the hypotheses of (6.4) are fulfilled, and we may conclude, by
(6.4), that p+1, as required.

The additional conclusion, that |p| is given by (6.1b), which also follows,
will be used later.

An immediate corollary of this result is the following.

(7.2) CoroLLARY. If G is a group with an Archimedean length function,
that is, satisfying A0-A4, then G is freely generated by the set X.

Suppose now that F is any free group, freely generated by a set W
of generators, and with |z| the length function on F relative to the set W
of generators. Then, by (2.7), |z| is an Archimedean length function,
and so, a fortiori, is its restriction to any subgroup G of F. We now
appeal to (7.2).

(7.3) N1eLSEN SuBGrROUP THEOREM. Every subgroup of a free group is
free.

We want to reiterate here that the full argument of this paper, cut down
to the case at hand, is essentially the original argument of Nielsen, and
that our full argument seems to be the obvious and natural, albeit
laborious, adaptation of Nielsen’s argument to a situation in which we
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have admitted two new difficulties: first, the length function on G is given
axiomatically without reference to any containing group F; and, second,
we have admitted the possibility of non-trivial non-Archimedean elements.

Suppose alternatively that F is any free product of a family & of
subgroups F,, a ranging over an index set 4, and with pairwise trivial
intersection. Then, by (2.8), the length function |z| on F naturally
associated with this free decomposition satisfies Axioms Al-5, and the
same is true of the restriction of the function |z| to any subgroup @ of F.
Moreover, it is easily seen that the non-Archimedean elements of F are
precisely the elements of the groups F,, a € 4, together with their con-
jugates. Application of (7.1) to G now provides a version of the Kurosh
Subgroup Theorem.

(7.4) KurosH SuBGROUP THEOREM. Let a group F be the free product of
a family F of subgroups F,, a € A, with pairwise trivial intersections. If
G is any subgroup of F, then G is the free product of a family G of subgroups
Gy, b € B, with pairwise trivial intersection. One member Gy, of the family G
s a free group (possibly trivial), while each of the remaining groups G, is
conjugate in F to some subgroup of one of the F,,.

We eludicate now the word ‘“separately’ in the final sentence of the
first paragraph of the introduction. Although the Nielsen Theorem is
indeed contained as a special case in the Kurosh Theorem, by viewing
the free group F' as the free product of the family & of infinite cyclic
groups F, generated by the elements w of a free set W of generators
for F, our proof of the Kurosh Theorem does not reduce, under these
special circumstances, to our proof of the Nielsen Theorem. For the
Archimedean length function on F, viewed as the free group on W as
free set of generators, does not coincide with the length function (which
is non-Archimedean unless F is trivial) on F, viewed as the free product
of the family & of groups F,.

8. Embedding theorems.

The axiom sets Al-A5 and A0-A4 were chosen (as ordinarily with
representation theorems) to be sufficient to carry out a proof that a group
G with a length function satisfying them would be a free group, or a
free product of subgroups with pairwise trivial intersection. In view of
(2.7) and (2.8), every subgroup of a free group or free product F must
possess a length function satisfying the axioms. In this sense, apart
from the question of possible dependence, which seems most unlikely
and of little interest, the axioms are best possible; that is, necessary as
well as sufficient for the conclusions that we have drawn from them.
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We have shown that if ¢ is equipped with a length function |z| satis-
fying the properties it would have to satisfy if it were derived from the
natural length function on a containing group F, free group or free prod-
uct, then G indeed possesses the structure it would have to possess, by
virtue of the theorems of Nielsen and Kurosh, if it were in fact a sub-
group of such a containing group F. One can even remark, rather
vacuously, that ¢ is in fact a subgroup of a group F of the prescribed
structure, namely, of G itself. But a more serious question in this
direction considers not only the structure of groups, but of ordered
couples consisting of groups equipped with length functions. We ask
whether ¢ with its length function, satisfying one or the other of the
two sets of axioms, can be embedded in a group F, of the expected sort,
whose natural length function is an extension of that given on G. We
can show that, with certain minor reservations, this is in fact always the
case.

It will appear from our construction that, given @ and its length func-
tion, the extension to F with its natural length function is minimal and
essentially unique. However, there remains a reasonable sense, suggested
by a remark of Hanna Neumann, in which the extension F is needlessly
large. It is characteristic of free groups or free products F, with their
natural length functions, that every ideal is principal: in explicit terms,
if z and y are elements of F and d(x,y)=m, then there exists in F an ele-
ment z such that |2| =m and d(x,2) =d(y,2z) =m. There will lie between G
and F, an essentially unique minimal “principal ideal group” F*, that is,
a group on which the length function derived from the containing group
F has the property just enunciated. The length function on F* will not
ordinarily be the natural length function associated with F'* under any
interpretation of it as a free group or free product, but will depart from
such a function only in that the lengths |w| attached to the elements w
of a free set W of generators, or the lengths I, attached to all the non-
trivial elements of a free factor ¥, (in the case of a free product), will not
necessarily all be equal to 1, nor, indeed, equal among themselves.

We feel strongly that the restriction to length functions whose values
are integers, rather than real numbers, elements of an ordered abelian
group, or even of algebraic structures of a more unfamiliar nature, is
regrettable; both the consideration of the various groups of paths (or
rather of disconnected finite sequences of paths) in topology, as well as
the occurrence in group theory of groups admitting exponents 2 for n
in some domain more general than the integers, appear to support this
feeling. From this point of view, we are inclined to attach more interest
to the “‘splitting group” F* of G than to the larger group F. However,
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we have not wanted to obscure the main ideas here by dealing with length
functions into domains any more abstract and unfamiliar than the inte-
gers. For this reason we abandon for the present any further considera-
tion of F* (whose nature will in any case be apparent from the construc-
tion that follows), and return to the construction of F.

(8.1) THEOREM. Let G be any group with an Archimedean length function,
that is, whose length function satisfies Axioms A0-A4 together with Condi-
tion CO. Then G is a subgroup of a free group F, free on a set W of free
generators, such that the length function on G is the restriction of the natural
length function on F relative to the set W of generators.

(8.2) THEOREM. Let G be any group with a length function satisfying
Axioms A1-A5, and also Conditions C1 and C2. Then G is a subgroup of
a group F, which is a free product of a family F of its subgroups, and in
such a way that the length function on G is the restriction of the natural
length function on F relative to the given free decomposition.

Although neither (8.1) nor its proof is a special case of (8.2) or its proof,
the ideas employed in the proof of (8.1) are the same as those in that
of (8.2), adapted to a simpler situation. Therefore we give a proof of
(8.2) only, omitting that of (8.1).

The idea of the proof is as follows. Starting with @ and its length func-
tion, assumed to satisfy A1-A5 and C1, C2, we associate with each x € ¥
a sequence of symbols 2™ (here m is an upper index, and not an exponent)
and xz—™ of length equal to |z|, which are intended to represent the
“gyllables” of x, written, in F, as a product of non-trivial factors from
the F,, with successive factors in different ¥',. The group F will be gen-
erated by these symbols 2™, x—™, upon which we must impose certain
relations. These relations arise on two accounts. First, that if d(z,y) 2 m,
then 2™ and y™ must be counted as the same element of F'; second, the
subgroups N(z) of G are not necessarily free, whence relations must be
imposed on their intended images in #'. With this done properly, we have
a map from Y into F, carrying each z in Y into its expression as a product
of syllables 2™ in F, which induces a homomorphism and, indeed, a
monomorphism, ¢ from @ into F.

There remains the matter of specifying the family # of subgroups
F, of F, of showing that F is their free product, and that they have
pairwise trivial intersection. This defines a natural length function |u|
on F, and it remains further to show that |px|=|z| for all # in G.

We turn now to the details. Let K, be the set of all ordered couples
(x,m) for x€ ¥ and m < }|z|. If xe X — N and x has odd length, |z|=
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2k +1, we introduce a further ordered couple (z,k+1); the set of all
these we denote by K,. Finally, if M € .4, then all non-trivial elements
of M have the same length which, by C1, is odd, say 2k+ 1. Let K, be
the set of all elements (z,k+1), xe M eN, |x|=2k+1. Define K=
K,uK,uK,.

Define a relation (x,m)=(y,m) on K to hold if and only if d(z,y) =m.
By A4, this is an equivalence relation. We write ™ for the equivalence
class of (xz,m), and L for the set of all equivalence classes. We observe
that, from the definition, (x,m)=(y,n) implies m=n, whence ™=y
implies m =n. Further, if |z|=|y|=2k+ 1, odd, then ak+'=y*k+1 implies
that d(x,y) = k+ 1 > }|x|, whence, by (5.6), z=y. In particular, for each
M e A, the map 0, from M into Lu{l} defined by fx=a*+ and
6,1 =1 is one to one, and we may use it to equip the image 0,,M with
the structure of a group isomorphic to M under 6,,. Moreover, the 0,,M
have pairwise trivial intersection, hence together generate in LU{l} a
subgroup F, which is their free product. We now define F, to be the
free group on the set L —F, as free generators. Finally, we define F
to be the free product of Fy and F,. Evidently F contains L, and isthe
free product of the family F' of subgroups consisting of all the 0,,M for
M e ¥, together with the infinite cyclic groups Z(z™) generated by the
ame L—Fy; and the groups of this family have pairwise trivial inter-
section.

We next define a map ¢ from Y into F. Let «, in ¥, have length 2k
or 2k+1. Then we set

pr = x~l~x=2- . pkopktlgk | a?xl;

here =™~ means the inverse ((x—)m)- of the m-th syllable (x-)™ of x-,
that is, of the equivalence class of (z~,m); if |x| = 2k it is to be understood
that the symbol z¥+! is omitted; further, if - € X — N and |x|=2k+1,
so that 2*+! has not been defined, we now define x*+1 = x~*+U~_ With this
definition it is easily seen that the  in X — N and their inverses are on
an equal footing, and we have, in particular, for all z,y € Y, that 2™ =y
if and only if m=n and d(z,y) 2m=n.

The last mentioned convention ensures that, for x € X — N, p(z~)=
(px)-. It follows that the correspondence from x into px extends uniquely
to a homomorphism ¢, from the infinite cyclic subgroup Z=Z(x) of G,
generated by z, into F. (In fact, as is easily seen, and will be shown later,
¢z is a monomorphism.)

We next show that, for each M € 4", the restriction of ¢ to MnY =
M — {1} determines a monomorphism from M into F. All elements of
M — {1} have common odd length 2k+1; if x and y are such elements,
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then d(x,y)=k+ 34>k, which implies that a'=y!, 22=92,..., aF=y*,
whence we may unambiguously associate with M an element w, =
akak-1 . x?%xl. Then gx=wuy a*u,, for all x € M, x+1. Since the map
0,y carrying z into x¥+! was a monomorphism, it follows that the restric-
tion of ¢ to M — {1} defines a monomorphism ¢,, from M into F.

Since @ is the free product of the family of its subgroups Z and M of
the types just considered, and these have pairwise trivial intersection,
it follows that all the ¢, and ¢,; have a common extension g to a homo-
morphism from ¢ into F. Since g is in fact the unique extension of the
map ¢ defined on the set Y of generators for G, we shall drop the sub-
script, and write simply ¢ in place of ¢.

Returning to the set K of couples (x,m), we define a new relation
(z,m) <> (y,m) to hold if d(x,y)=m—4%. By A4, this is an equivalence
relation. It is immediate that (x,m)=(y,m) implies (z,m) < (y,m), so
that we may carry the new relation over to the set L, writing 2™ « y™.
Let x and y be two elements of N, of the same length 2k +1; then 2*+! «
y*+1 is equivalent to d(z,y) >k+ 4= }(2k+1), hence to x~y. Thus each
equivalence class U, of L under the relation 2™ «— y™ contains 0,,M — {1}
for at most one M € A". In addition, ¢, may contain certain elements
from L —F. The subgroup F, of F generated by C, will therefore con-
tain at most one 0,,M together with groups Z(z™) for all ™ e C,— F,,.
In view of the structure of F as the free product of the 6,,M together
with the Z(x™) for a™ € L — F, it follows that each F, is the free product
of the groups it was just mentioned to contain, that F is the free product
of the F,, and that the ¥, have pairwise trivial intersection.

A natural length function |u| on F is now determined by the family &
of subgroups F,, and we want to show that |px|=|z| for all x € . From
this it will follows that the homomorphism ¢ is a monomorphism, since
px=1 would imply that |px|=[z|=0, hence z=1.

(8.3) LEMMA. If x is in Y, then |px|=|x|.

Proor. Since y™ and z" can belong to the same F, only if m=n,
inspection of the definition of gz requires us only to consider the case
that |z| =2k, when the two syllables z~%- and ¥, with same superscript,
are adjacent. But % < 2% requires that d(x,x~)2k—4%, and this im-
plies that

|wx| — |x| = |x|—2d(x,2") < 2k—2(k—3%) = 2k—2k+1 = 1.
Now |zx|—|z|=0 implies that z € N, which, by Cl, contradicts |x|=

2k>0, while |xx|—|z|=1 is excluded directly by C2. Therefore the
expression for gx as given (with the convention to omit x¥+! if |x|=2k)
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is in normal form relative to the free decomposition, and |px| is precisely
the number of syllables displayed, that is, |px|=|z|.

(8.4) LEMMA. If x and y are in Y, then d(px,py) =d(,y).

Proor. We may put aside as trivial the cases that z=1, y=1, z=y,
or x~y. We may assume by symmetry that |z|<|y|. Then ¢y has the

form -
oy = y~l-y~i-. . . yh+lyh |yl with k<h.

By (5.6),
d(z,y) < }lx|, whence n = [d(x,y)] = k,

and it will result from the definition of the relation (x,m)=(y,m) that
the last n syllables of gz and ¢y will agree; unless the last remaining
syllable of gz is z=%*-, it follows also that the last remaining syllables of
gz and @y do not agree. Excepting the case noted, using also the defini-
tion of the relation 2™ < y™ to decide whether or not the two last re-
maining syllables lie in the same component F,, it follows routinely
from the definitions that d(ex,py)=d(x,y).

The case remains that the last remaining syllable of ¢ x is 2=%-; here
necessarily |x| =2k and, by (5.8), d(z,y)=k. If |x| <|y|, so that the last
remaining syllable of gy is y*+1, then, since % « y¥*+1 is impossible for
elements with different superscripts & and k+ 1, it follows that «—*- and
y*+1 are in different F,, whence d(px,py)=k=d(x,y) as required.

We are left with the possibility that the last remaining syllables of
gx and gy are % and y~*-; here necessarily |x|=|y|=2k and, using
(5.6), d(z,y)=k. If x~%- and y~%- lie in different F,, then d(px,py)=Fk
and all is well. We must show that the assumption that x—%- < y~%*- is
contradictory. This implies, again using (5.6), that d(z—,y~)=k—e,
where ¢ can be either 0 or . Formula (6.1b) is applicable to each of
the products xy~ and zy—ay- to give

lzy—| = |z|+ |ly| — 2d(z,y) = 2k+2k—2k = 2k,
and
ley—2y~| = 2|z|+2]y| — 4d(x,y) — 2d(y~,2")
thus
(xy~Yxy~)| = 4k +4k—4k—2(k—¢) = 2k+2e = |vy~|+2¢.

Now 2¢ is either 0 or 1. If 2¢=0, we have |(xy~)(xy~)|=|xy~|, whence
zy-€ N, zy-+1, which, since, |xy—|=2k, even, contradicts Cl. If
2¢e=1, we have |(xy~)(xy~)|=|ry~-|+1, in direct contradiction of C2.
This completes the proof of (8.4).
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(8.5) LEMMA. Let x,y and z€ Y, with y ~x, y ~ 2z, and |xy| = |z|, |yz| = |z|.
Then |p(xyz)| = |wyz|.

Proor. We use freely the results (5.7), (5.8), (5.9), and also (8.3) and
(8.4). It then follows directly that y € N has odd length 2k+ 1 and that

p(ryz) = x-l-x~2- . .. ghtlyktly-(+D— - o251

a product consisting of an initial segment of the normal form for ¢z
followed by y*+! and then by a final segment of the normal form for gz.
And all pairs of adjacent factors lie in different components F, with
the possible exception of the pairs z*+1, y*+1 and y*+1, 2=*+D-_ But, in
fact, d(x,y-)=3%ly|=k+% implies that ¥+l < y*+1 and similarly,
y*+l o 2%+ go that the triple product z*+lyk+lz-*+D- reduces to a
single syllable %, lying in some F,. From the structure of F,, which can
contain only a single group 6,M, containing the element y*+!, and is
the free product of this with infinite cyclic groups generated by elements
not lying in 0, M, it follows that w+1. Thus the normal form for
¢(xyz) is obtained from that given above by replacing the product
xk+lyk+ly—k+D- hy a single factor w. Thus, starting from the normal
words for gz, ¢y, @z, written down one after the other, and containing
in all |z| +|y|+ || syllables, we have cancelled k syllables of x against k
from y, and another k from y against k from z, removing thus 4k syllables;
we have further decreased the number of syllables by two, in replacing
a triple product by a single syllable w. In all, this gives |p(xyz)| =
||+ |y| + |2| —4k—2; since |y|=2k+ 1 this gives |p(xyz)|=|x| —|y| + |2| =
|xyz|, as required.

To complete the proof of (8.2) we must show that |pp|=|p| for all
p € G. We may suppose p written in the form p==zz,...x, where the
x, satisfy the conditions established in the proof of (7.1). We shall apply
Theorem (6.4).

From (8.3) and (8.4), and the result (5.6) that the x; satisfy (6.4a),
it follows that the gz, satisfy the analogous condition (6.4a)’. Next, it
was shown in the proof of (7.1) that (6.4b) holds, whence it again fol-
lows that the analogous condition (6.4b)" holds with the gz, in place of
the x;. The analog, (6.4c)’, of (6.4c), was established directly, under the
given hypotheses, as (8.5) above. Thus the sequence of elements gx,,
@y, . . ., @z, of the group F, satisfying Axioms A1-AS5, fulfils conditions
(6.4a), (6.4b), and (6.4c). By (6.4) we are permitted to conclude that
|@p| is given, in accordance with (6.1b), by the formula

n—1

lgp| = Z oz, — 2 3 (g, p24417) -

=1 i=1
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Comparing this with the original form of (6.1b),
n—1

lp| = El A 221d(xi7xi+1—) )

and appealing to (8.3) and (8.4), we conclude that |pp|=|p|. This com-
pletes the proof of the embedding theorem, (8.2).
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