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A SIMPLIFIED CONSTRUCTIVE PROOF OF THE
EXISTENCE AND UNIQUENESS OF HAAR MEASURE

E. M. ALFSEN

More than 20 years have passed since H. Cartan gave his constructive
proof [1] avoiding the axiom of choice and proving existence and
uniqueness simultaneously. In spite of this, his proof has not been
generally adopted in subsequent presentations of the subject. It is con-
sidered to be more complicated and less intuitive than the traditional
proofs, going back to A.Haar [2] and A. Weil [6] (Cf. e.g. [4,p. 113]).
The aim of this paper is to present a version of the constructive proof
which is as simple and intuitive as the traditional non-constructive
proofs, if not equally short.

1. Preliminaries and notations.

In the sequel, G shall be an arbitrary, but fixed, locally compact
group, and L shall be the class of continuous real valued functions with
compact support on G. For every member V of the neighbourhood filter
¥ of the identity e, the symbol L, denotes the class of all f € L vanishing
off V. For every fe L the conjugate function f* is defined by f*(x)=
f(z~1). For every fe L and s € G, the left and right translates f, and f¢,
are defined by f,(x)=f(s"x) and f¥x)=f(xs). (These are the conven-
tions of [5]).

It follows from the local compactness, that if f, p e L™ and @0,

then there exist elements s,,...,s, € @ and positive numbers «,,...,a,
such that
n
(L1) fs2opy.
=
Thus we may define
n n
(12) T = int] 5 o175 S o
= i=
m m
(1.3) (i) = sup{ 55,1 5 by = 1)
= J=
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It should be noted that for every fe L*, f+0, one has (f:¢)>0, and
there is a ¥ € ¥” such that (f:¢)>0 whenever ¢ € L},
We list the following standard properties for later references:

(L.4) f29 = (f9) £ @99),
(1.5) (f9) = (Fy)y:o),
(1.6) (fo:9) = (fr9),

(1.7) (f:9) = «(f:9),
(1.8) St ofie) < 30 (fee)

The dual statements are valid for the function (f,¢) - (f:¢).

ProrositioN 1.1. Let f,,...,f, €L and A>1 be arbitrary, and write
f=3".fi- Then there exists a V € ¥ such that for every g € Ly, p+0,

(1.9) ,_El(pr) < Mf:9)
Proor. Cf. for example [4, p. 114].

ProrpostTioN 1.2. Let {f;} be some generalized sequence on L which
converges uniformly to f+0, and for which all f; vanish off some fixed
compact K. Then
(f.:9)

. lim,~—- =1,
(1.10) im; Fo)

uniformly in ¢.

Proor. Let f, € L' be chosen such that fy(x)=1 for x € K. Let ¢>0
be arbitrary and write 6=(f,:f)~le. By assumption there exists an
index j such that for all >5:

\f=fil < &fo-

Writing this relation as two inequalities, using (1.4), (1.7) and (1.8), one
obtains

I(F:p) = (fiig)l < 8(fo:9)

for all p € LY, ¢+ 0. Dividing through by (f:¢) and making use of (1.5),
one obtains

<é€

l 9
(J:9)

for all i>j and p € L', p+0.
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CoroLLARY. If {f;} is a generalized sequence on L™ and f;4fe L,
f£0, then
(fi:9)
(f:9)

and the convergence is uniform in @.

(1.11) 1,

Proor. Application of Dini’s lemma.

ProrosiTioN 1.3. If g,we L" and y+0, then
(1.12) (9:%) = (9:) -

Proor. Let A>1 be arbitrary, and determine ¢,,...,t, G and
B1s- - -»Bm>0 such that

(1.13) gj Bivy <9, (g:9) SAZB;.

Choose V €7 such that (1.9) holds with g;y, in the place of f;.
(1.4)—(1.7) and (1.13), the following relations hold for any g € Ly;:

S 8,9 = 4G9 = GV -
Jj=1

By (1.13), this implies

—

(g:9) < 2g:y) ,

and the proof is complete.

2. Reduction to a separation theorem.

A functional I on L* will be said to be admissible if it is non-trivial
(i.e. =+ 0), isotone (or order-preserving), positively homogeneous, additive,
and left-invariant in the sense that

(2.1) I(f) = I(fy)

for all fe L" and all s € G. It follows from (1.1) that for every admissible
functional I:

(2.2) pel’', 9 0 = I(p) > 0.

To every admissible functional I on L* one may associate a pre-ordering
(reflexive and transitive relation), defined by

(2.3) f=g(modl) < I(f) = Ig).

The existence and uniqueness of Haar measure will follow from the
existence and uniqueness, up to a positive factor, of an admissible func-
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tional on L*. In this connection we observe that an admissible functional
is determined up to a positive factor by its associated pre-ordering. In
fact, one has the following, somewhat stronger, statement:

ProrosiTioNn 2.1. Two admissible functionals with comparable (finer-
coarser) pre-orderings differ only by some positive factor.

Proor. Let I,J be two admissible functionals on L* such that
(2.4) Ig) < I(h) = J(g) < J().

Let ¢ be an arbitrary, but fixed, non-zero member of L". By (2.2) there
is a positive number « such that

I(p) = aJ(9)

For an arbitrary fe L* there exists a number = 0 such that
I(f) = pl(g) -

Applying (2.4) twice with g=f, h=g¢p, and g=f¢, h=f, one obtains
J(f) = BJ(g) .

Hence

I(f) = Bl(p) = «pJ () = «J(f) .
This accomplishes the proof.

Proposition 2.1 shows the importance of the pre-orderings associated
with admissible functionals and proves it sufficient to find one such
relation comparable with any other. In this connection it is natural to
consider the following definition of “relative size” on L':

(2.5) fcg <= (f:ip) < (g:g) forall gel’, p+0.

This type of definition is of course, not new. In principle it is identical
with Eudoxos’ definition of relative size for incommensurable propor-
tions. In the present context it gains importance by virtue of the fol-
lowing:

ProprosiTioN 2.2. The relation (2.5) is coarser than the pre-ordering
associated with any admissible functional on L*.

Proor. Let I be an admissible functional on L* and let f,ge L,
and I(f)<I(g). If pe L', p+0, and

m n
Zﬁj‘ptj éfs g é 2“1’973."
j=1 i=1
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then
I()

J

M3

b < 1) 3.
By (2.2),

%

P

IIA

n
z Kg o
=1

1

I

J

Hence (f:¢) = (9:9), and the proposition is proved.

By Propositions 2.1-2.2, it suffices to prove that the relation (2.5)
itself is a pre-ordering associated with some admissible functional. To
this end we claim that for all non-zero f, g € L*

. : . : . (9:9)

(2.6) 1nf¢( ) lim, (o) lim, T
where the indices ¢ € L", @+0, are directed by inclusion of the sets
{x | p(x)>0}. By (1.4)-(1.9), the limit at the right hand side of (2.6)
would define an admissible functional for any fixed fe L*, f+0, and by
the alternative expression at the left hand side of (2.6), its associated
pre-ordering would be exactly the one defined by (2.5). Hence it suffices
to prove the claim (2.6).

The relevant information in this connection turns out to be the follow-
ing separation property for functions in Lj,:

(S). If f,ge L* and f(x)<g(x) for xc spt(f), then there is a VeV~
such that every ¢ € L}, admits group elements s,,. . .,s, and positive num-

bers «y,...,x, such that n

f§EM%§g-
1=

An immediate consequence of (S) is the following: If f,ge L" and

f(x)<g(x) for x espt(f), then there is a Ve ¥ such that for every
pely

(2.7) (fio) < (g:9)
ProrosirioN 2.3. The separation property (S) implies the claim (2.6).

Proor. 1) We first prove that for every non-zero fe L*

. ()
2.8 1 VPl
(2.8) i, )

Let A>1 be arbitrary, and write f,=(f—1/n)* for n=1,2,..., By the
Corollary to Proposition 1.2, there is a natural number m such that for
all pe L, 940,

1.
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(fm qv)
-1
= (Fre)

Now we apply the separation property (S) in the form (2.7) with f,, in
the place of f and f in the place of g. Thus for some Ve ¥  and all

pely Toio) < (f:0).

Combining the last two inequalities and applying Proposition 1.3, one
obtains —

_f_

(f:9

II/\

ll/\
N

for every ¢ € L},. This completes the proof of (2.8).

2) Now only the first equality of (2.6) remains to be verified, and we
shall be through if we can prove that the generalized sequence
{(g:9)/(f: (p)}q, is ‘nearly monotone” in the following precise sense: For
every pe L', p+0, and every 1> 1, there is a ¥V € ¥” such that for every
pelL;

(9:9) _ . (g:y
(2.9) S g A
(F:9) —  (f:9)
By (1.5) and its dual, if suffices to take a V € ¥” such that (y:¢)/(y:@) <2

for all ¢ € L},. This is possible in virtue of (2.8), and the proof is com-
plete.

~

IIA

ReMARK. Qur motivation for introducing the generalized sequence
{(@:9)/(f:¢)}, and not restricting ourselves to the study of {(7:¢)/(f:¢)},
is the “near monotonity’’ of the former, yielding the equality (2.6),
which is the clue to the uniqueness problem, in virtue of the two simple
Propositions 2.1-2.2.

3. Proof of the separation theorem.

We first sketch the idea of the proof. To establish the property (S),
we shall show that some suitably chosen function # between f and g,
can be uniformly approximated by functions

n
z ai(psi ’
=1

where ¢ is “sufficiently concentrated’” around e.

Such an approximation could be easily obtained by means of the Haar
integral. The theorem on (right) approximate identities in the convolu-
tion algebra, would yield an approximation of any & € L™ by I(p)-Y(h*g),
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<

where ¢ is
should write

‘sufficiently concentrated” around e. In the next step one
n
h = z h’i Py
i=1
where each &, is “sufficiently concentrated’ around some point s; (de-

composition of unity). By application of the theorem on (left) approxi-
mate identities once more, one would obtain an approximation of Ax¢ by

I(hz) (psi .

M=

7

The obvious defect of this procedure, is its dependence on the Haar
integral. This defect, however, is not so severe as it may appear at first
sight. In fact one may apply an approximate integral f — (f:y), and
procede as outlined above. The details follow.

Henceforth we shall use the simplified notation (f:¢) to mean (m).
This will not cause any confusion, since no lower estimates (f:¢) will
appear in the sequel. o

For every g € L, ¢ + 0, we define the convolution relatively to p on L*, by

(3.1) [fxgl,(x) = (f(s)g(s22):9(5)) = (f(ws)g(s7%):9(s)) -
ProrositioN 3.1. For fixzed, non-zero f, g € L*, the Sfunctions

[fr4,(@)
. h ==
) T

are equicontinuous.

pel’, p+0.

Proor. Let x € G and ¢>0 be arbitrary. The functions s — g(s~ly)
converge uniformly to s — g(s—'x) when y tends to x, and they will vanish
off some fixed compact set for all ¥ in a compact neighbourhood of .
By Proposition 1.2, there is a ¥V € ¥~ such that for every y eV, and
every pe L', p+0,

(3.3) ¢

= Fral @)

l 1 _L/*gl®)
[f*g],(x)

By (2.2), one has
(3.4) (f(®)g(s72):9(8)) = (f($)g(s72):f(5))(f(5): 9(s)) -
Multiplying both sides of (3.3) by

[f*g],(x)
(f:) ’
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and making use of (3.4), one obtains

[F*g1,(2) _ Lf*g),®)| _
(f:9) (f:9)

forall yexV and all pe L*, ¢ +0.

By (1.7) and (1.8), the relative convolution is positively homogeneous
and sub-additive. The latter statement means that

(3.5) [éfi*g]wéé[fi*glw

for all f,g,p e L' and ¢+0.
When ¢ is concentrated around e, the relative convolution is approwi-
mately additive in the sense of

ProrosiTION 3.2. Let f,,...,f,, and g be arbitrary non-zero members of
L*, and write f = 37_, f;. For every ¢>0, there is a V € ¥ such that

(3.6) 3 o)~ [l ) < elfi0)
for all e L}, and all x € G.

Proor. We define k,(z) by

3 [firgl, @)
k,p(x) — 1=1

_ Uf*gll@)
(f:9) (f:e) '

and we shall prove that there exists a V € ¥~ such that k (x) <¢ for all
peLy, p+0, and all x € G.

By Proposition 1.1, there exists for every x € G a V,e ¥  such that
k,(x) < 3¢ for all p € L}’,z. By Proposition 3.1, the functions %, are equi-
continuous. Hence there exists an open neighbourhood U, of each point
x € (@, such that k(y)<eforallye U,and all p € L;z. The functions k,,
all vanish outside the compact set K =spt(f)-spt(g). Let K< U,u...
uU,,, and define V=V, n...nV,. Forevery p e L}, +0, and every
x € (@, one has k,(x) <e. This proves the proposition.

We now turn to the key lemma, on the existence of approximate
identities under relative convolutions.

ProrosITION 3.3. Let g € L' and ¢ >0 be arbitrary. Then there exists a
U eV such that

Math. Scand. 12. — 8
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(3.7) h*gl,— (b @)l = (h:g)e,

whenever te G, h e L;LU, Qe L, ¢+0.
Similary there exists a V € ¥ such that

(3.8) lg*k],— (k: @)%, = (K*:@)e,

whenever we G, ke L}, 1, pe L, p+0.

Proor. 1) By right uniform continuity, there is a U € ¥~ such that
zytelU = |gl@)—g(y) < e.

Let te@ and heL,;. Now, h(s)=0 if s¢tU, or equivalently if
(tx)(s™1x)1=t"1s ¢ U, where = € ¢ is arbitrary. Hence for every pair
s,xe@:
|h(s)g(s~1x) — h(s)g(t-1x)| < eh(s) .
Writing this as two inequalities and applying (1.8) to both, one obtains
the desired relation (3.7).
2) By left uniform continuity, there is a ¥V € ¥~ such that

alyeV = |g@)-g@)| <e.

Let wue @ and ke Ly,.. Now, k*(s)=0 if s~ & Vu-l, or equivalently
if (xs)~1(xs)=s"lu ¢ V, where x € G is arbitrary. Hence for every pair
s,x€@:

lg(xs)k*(s) — g(xu)k*(s)| = ek*(s) .

Again, the desired relation (3.8) follows by application of (1.8).

ProposITioN 3.4. Let f,g € L" and &> 0 be arbitrary. Then there exists
a VeV such that every ¢ € Ly, admits group elements t,,. . .,t, € spt(f)

and positive numbers «y,. . .,x, such that
(3.9) 'l[f*gl— 2 x| = (fre)e.
1=1 )

Proor. By Proposition 3.3, there is a U € ¥~ such that

(3.10) [h*g),— (h:@)gill, = (h:p)ie

whenever t€ G, he L)y, pe L*, p+0. Let

spt(f)CUtiU, where {,,...,t, € spt(f).
=1
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By decomposition of unity, one may write f=3%"'f,, where f;e L, for
i=1,...,n. By Proposition 1.1 and Proposition 3.2, there is a Ve ¥~
such that

(3.11) 3 (fuee) < i),
and
(3.12) \ il 3 Udly) = (Fiplie

for all ¢ € Ly, p+0. Applying (3.10) with A=f;, i=1,...,n, and adding
the resulting inequalities with use of triangle inequality and (3.11), one

obtains
n

z ixglo— 3 (frio)ge

1=1

= (fro)ke

o

for all p € L,", p+0. Combination of this result and (3.12) yields the
desired relation (3.9) with ;= (f;:¢) for i=1,...,n.

ProposrTioN 3.5 (Cartan). For every mon-zero fe L' and every >0,
there is a Ve such that every ge L} admits group elements
t1,. . -5t, € 8pt(f) and positive numbers yy,. . .,y, such that

(3.13) <e.

oo}

n
f—'z Yi9y;
=1

l

Proor. By Proposition 3.3, there is a V € ¥ such that the following
relation holds for an arbitrary, but henceforth fixed, geLJ{,, and for
every g L, ¢+0:

(3.14) ILf*gl,— (@*: )l = (9*:9)e.

By Proposition 3.4, one may find a ¢ € L, group elements ¢,,...,t, €
spt(f), and positive numbers «,. . .,x, such that

< (f:9) &
w ([197%)2
Combination of (3.14) and (3.15) gives

n

(3.15) H[f*g]q,— > *:91;

=1

H(g*:q’)f- .é‘xigti

2

(f:9) ) €
(f:9%)/ 2
Dividing through by (¢9*:¢), writing y,=(g*:¢)'«; for ¢=1,...,n, and

making use of the relation (f:¢)=<(f:g*)(g*:¢), one obtains the desired
relation (3.13).

< (@0 +

(e ]
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ProrosiTION 3.6. The separation property (S) is valid in the locally
compact group G.

Proor. Let f,geL' and let f(x)<g(x) for xespt(f). Define
h=1%(f+g), and
e = }inf {g(a)—h(z) | 2 € spt(R)} .

The set {x | g(x) > ¢} is open and contains spt (k). By a known property
of topological groups (or actually of uniform spaces), there is a U € ¥~
such that spt(k)- U <{z | g(x) >e}. Writing 4 =spt(h)-U, we can state

(3.16) keLy, |h—k|,<e = fsk<g.

By Proposition 3.5 there is a Ve¥’, V<U, such that every pe L},
admits group elements ¢,,. . .,¢, € spt(f) and positive numbers «,,...,x,
such that

< e.

0o

n n
+
zf"i.‘hiELA’ “h‘ Z“i.‘hi
i=1 i=1

By (3.16) the proof is completed.
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