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ON A COLORING PROBLEM

E. ASPLUND and B. GRUNBAUM

1. Introduction.

The present note deals with the problem of ‘“‘coloring” certain families
of parallelograms in the plane and with some generalizations of this
problem.

We find it convenient to introduce the following terminology. Let
n,m,k,r be positive integers, k<m. A family #={P} of polyhedra in
n-dimensional Euclidean space shall be called a family of type (n,mk,r)
if the following conditions are fulfilled:

(i) There exist m concurrent straight lines L;, 1< =<m, (depending
on &) such that for every PeZ all the edges of P are parallel to some %
or less of the lines L,.

(ii) No r+ 1 members of & have a common point.

Thus, e.g., a family of non-intersecting rectangles in E3, with edges in
any two of three given mutually orthogonal directions is of type
(3,3,2,1). The three sides of a triangle in the plane form a family of
type (2,3,1,2).

Let #={P} be any family of sets. We say that Z is g-colorable for a
positive integer ¢ if it is possible to assign to each member of & one of q
different colors in such a way that any two members of £, to which the
same color is assigned, have an empty intersection. In other words, & is
g-colorable if it can be decomposed into ¢ subfamilies each of which
consists of mutually disjoint sets.

We define C(n,m,k,r) to be the minimum of ¢ such that each family
of type (n,m,k,r) is g-colorable, if at least one such g exists; C(n,m k,r) = oo
otherwise.

The present paper was motivated by a problem proposed by A. Bie-
lecki [1], which in our terminology may be stated as: “Is C(2,2,2,2) <0 ?”
Bielecki also gave an example which shows that C(2,2,2,2) 2 4, and men-
tions the easily proved fact that C(1,1,1,r)=r.
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QOur main results are:
THEOREM 1. C(n,m,2,r) < o for all n,m,r.
TaroreM 2. ((2,2,2,2)=6.

Some reduction theorems, as well as results pertaining to the case
k=1, are also obtained.

2. Reduction theorems.

THEOREM 3. C(nmk,r)<q for some positive integer q follows from the
g-colorability of each finite family P of type (n,m,k,r) whose members have
non-votd k-dimensional interior and are such that no (k—1)-dimensional
hyperplane contains more than one of the (k—1)-dimensional faces of the
members of P.

Proor. If each finite family & of type (n,m,k,r) is g-colorable, then
C(n,m,k,r)<q by a theorem of de Bruijn and Erdés [2, Theorem 1]
which states that a graph is (vertex) g-colorable if each of its finite sub-
graphs is g-colorable. Thus we have only to show that the assumptions
of Theorem 3 imply that each finite family #* of type (n,m,k,r) is g-color-
able. But this follows immediately from the observation that, on adding
(Minkowski addition) suitable k-dimensional polyhedra of sufficiently
small diameter, the members of &* may be ‘“fattened up” without
changing their incidence relations. This ends the proof of Theorem 3.

In view of Theorem 3 we shall from now on consider, without loss of
generality, only finite families.

The next result is equally easy:

TaBOREM 4. C(nm k)< (m) Cln k).

k

Proor. Since each family of type (n,m.k,r) may obviously be de-
composed into at most m
()

mutually disjoint families of types (n,k,k,r), the theorem follows from
the definition of C(n,m,k,r).

It seems probable that for »>1 the equality sign holds in Theorem 4,
though we succeeded to prove this only in a very special case (see
Section 6).

If n = k it is immediate that C(n.k,k,r) = C(k.k,k,r). Therefore, in order
to prove Theorem 1, it is sufficient to establish C(2,2,2,r) < co. This will
be done in the next section.
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3. Proof of C(2,2,2,1) < oc.

By Theorem 3 it is sufficient to consider finite families & of parallelo-
grams in the plane, no r + 1 of which have common points; for convenience
of expression we may assume that & consists of rectangles with ‘hori-
zontal” and “vertical”” sides. A rectangle R, is said to be vertex-intruding
into another rectangle R, if R, contains at least one of the vertices of R,.
Two rectangles are vertex-incident if at least one of them is vertex-intruding
into the other. We use these concepts in order to establish the following
proposition:

P may be decomposed into 8r subfamilies, each of type (2,2,2,r), tn such
a way that no vertex-incidence occurs among members of the same sub-
Jamily.

Indeed, otherwise there would exist a family & with a minimal num-
ber of elements for which such a decomposition is impossible. The
minimality of & implies that each member of & is vertex-incident to
more than 87 other members of . Now, each member of & is vertex-
intruding into at most 4r other members of #. Therefore, if N is the
number of rectangles in &, there are at most 4rN vertex-incidences
among the members of & and thus there exists at least one rectangle
in Z into which not more than 4r other rectangles are vertex-intruding.
This rectangle, therefore, takes part in not more than 8r vertex-inci-
dences, in contradiction to the above assumption.

We remark parenthetically that by using a slightly more careful
procedure it is possible to show that the above proposition holds also
with “into less than 47’ instead of “into 8¢”’. On the other hand, it is
obvious that a similar ‘“vertex-incidence elimination’ is possible for
(finite) families of any (n,m,k,r) type.

Pt

Fig. 1.

Now we shall complete the proof of C(2,2,2,r) <o by showing that
any family & of type (2,2,2,r) among whose members no vertex-inci-
dence occurs is 7-colorable. Since no two members of & are vertex-
incident, it is obvious that if the intersection of any r members of Z is
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not empty, they must intersect in a pattern represented schematically
in Fig. 1 (for r=5).

Let #* be the subfamily of & consisting of those (and only those)
members P* of 2 which satisfy the condition: There exists an r-mem-
bered subfamily of & which includes P*, all of whose members have a
non-void intersection, and P* is the tallest and narrowest of the r rect-
angles (corresponding to P* in Fig. 1). Then, obviously, the members of
P* are disjoint, and therefore 1-colorable, while the members of &
which do not belong to #* form a family of type (2,2,2,r—1). An in-
ductive argument now establishes the assertion, and with it Theorem 1.
Moreover, we proved that ((2,2,2,r) <8r%; the more precise estimate
C(2,2,2,r) < 4r* may be derived from the strengthened form of the first
part of the present proof, but even this bound seems to be quite crude.

4. Proof of Theorem 2.

By using arguments similar to those in the previous section, we shall
first establish C(2,2,2,2) < 6.

Let & be a finite family of rectangles (with horizontal and vertical
sides) of type (2,2,2,2); without loss of generality we assume (see Section
2) that no vertical or horizontal straight line contains more than one of
the edges of the members of Z.

We may, moreover, assume that no member of & completely con-
tains another member of & (the same argument would apply to all
families of types (n,m,k,2)). Indeed, if the subfamily £* of 2, obtained
by omitting from & those rectangles contained in another rectangle of
2, is q-colorable with ¢ =2, the family £ is also g-colorable since each
of the omitted sets meets precisely one other member of & (as a matter
of fact, of #*).

Only families & satisfying these additional conditions shall be consid-
ered in the remaining part of this section.

A family & shall be called horizontally stmple if it has the following
property: No member of the family intersects both vertical edges of another
member of the family.

In other words, intersections of the types represented in Fig. 2 do not
occur among members of a horizontally simple family.

—

L1 1|

Fig. 2.
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Vertically simple families are defined similarly, interchanging ‘‘hori-
zontal” and “vertical’’ in the obvious way.
We have

LemMmA. Every horizontally [vertically] simple family P is 3-colorable.

Proor. We shall prove the Lemma only for horizontally simple
families, the proof for vertically simple ones requiring only obvious
changes.

Let n(#) be the number of rectangles in &. By induction, we may
suppose that the Lemma is proved for n(£) < N (it is obvious for n(#) < 4).
Let PyeZ be such that its lower edge is higher than the lower edge of
any other member of #. By hypothesis, Z — {Py}=%,U%,UZ;, where
the members of Z,, #,, #, are mutually disjoint. But P, meets at most
two members of # — {P,}, since if P € # — {P,} meets P, it must contain
at least one of the lower vertices of P,. Hence we can adjoin P, to one
of the families &#;, #, or &, while preserving the mutual disjointness
property of this family. This proves the assertion for n(#)=N, and thus
completes the proof of the Lemma.

The proof of C(2,2,2,2,) <6 follows now easily. Let any family & of
rectangles be given. We decompose it into two subfamilies &, and 2,
in the following way: A member of & shall belong to #, if and only if
its horizontal edges may be joined by a vertical segment which is com-
pletely contained in another member of #. The subfamily £, is formed
by all the members of & that do not belong to £;. It is immediate that
2, is a horizontally simple family, while &, is a vertically simple one.
By the Lemma, each of them is 3-colorable, and therefore &£ itself is
6-colorable, i.e. (2,2,2,2,) <6 as claimed.

5. Proof of Theorem 2 (end).

We shall now complete the proof of Theorem 2 by describing a family
of type (2,2,2,2) which is not 5-colorable. For simplicity of description
we shall use also ‘‘degenerated rectangles”, i.e. horizontal (and vertical)
segments (their endpoints shall be indicated by arrows).

Fig. 3.

We start with the obvious remark that the five-membered family
represented in Fig. 3 is not 2-colorable.
It follows then easily that in any coloring of the twelve-membered
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family represented in Fig. 4 at least one of the regions bounded by a
dotted line meets rectangles colored by (at least) three different colors.
We shall call such a family a horizontal “filter bed’’, each of the eight
dotted regions representing a ‘““filter”.

\\ // \\_// \\\ ,// \ // \ // \\\_// \\_// \\\‘_'11/

~— ~——

Fig. 4.

We now consider the following system of filter beds. Take 8% congruent
horizontal filter beds and arrange them vertically one above another at
equal distances (Fig. 5). Over the leftmost filters of these filter beds put
a vertical filter bed such that each of its filters intersects 87 of the filters
in the horizontal beds. Put a chain of 8 vertical filter beds over the
next column of filters so that each of their filters intersects 8% horizontal
filters, and so on, until the rightmost column is intersected by a chain
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88horz’zontal Jilter beds
scale distorted

[N

Fig. 5. System of filter beds. A line with seven crossmarks represents a filter bed.
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of 87 vertical filter beds such that each filter in this chain intersects one
horizontal filter.

Let a coloring of this system be given. Looking at the leftmost vertical
filter bed, we find at least one bunch of 87 horizontal filter beds such that
their leftmost filters are intersected by a 3-color vertical filter. Next,
out of these horizontal filter beds at least 8% adjacent ones intersect the
next vertical chain in a 3-color vertical filter. Proceeding in this manner,
we finally find a horizontal filter bed all of whose filters are intersected
by vertical 3-color filters. But this horizontal bed contains at least one
3-color horizontal filter, hence in the whole system there is at least one
intersection between a 3-color vertical and a 3-color horizontal filter,
which proves that the system cannot be colored by less than six colors.
This ends the proof of Theorem 2.

We remark that the above example of a family of type (2,2,2,2) which
is not 5-colorable contains more than 108 rectangles; we found another
example of the same kind containing “only’’ about 50000, but its con-
struction is quite complicated. Since it is easy to find families of type
(2,2,2,2) which are not 4-colorable and which contain less than 200 sets,
it would be interesting to know whether the size of non-5-colorable
families may be substantially reduced.

6. Some additional results.

The easily established relation C(1,1,1,r) =7 implies, using the reduction
theorems of Section 2, that C(n,m,l,r)<mr. We shall show that, for
n = 2, we have C(n,m,1,2)=C(2,m,1,2)=2m.

Following an idea similar to that used in Section 5, we remark first
that in any coloring of the “filter-bed” represented in Fig. 6 at least one
of the two ‘‘filters’” (regions indicated by
a dotted line) contains segments colored / \ / \
by two different colors. Then, superim-
posing a sufficient number of such filter
beds in m directions and of suitable sizes

and positions, families of type (2,m,1,2)

not colorable by 2m —1 colors, may be ob- \\__,/l N
tained. For m=2 an example is given in Fig. 6.
Fig. 7.

This family consists of 21 sets; the corresponding example for m=3
consists of 765 sets, etc. By slight changes, a small “saving” may be
achieved, reducing the number of sets to 19 for m =2, to 649 for m=3,
ete.

It is easy to find families of segments showing that ((2,2,1,3)25,
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C(2,2,1,4)2 6, etc. But we were unable to settle the question whether
C(2,m,1,r)=mr for r > 2.

By methods similar to those used in Section 4 it is possible to show,
e.g. that C(2,3,3,2) is finite; we
were unable to prove the finite-
— ness in the general case C(2,k,k,r).
For n=3 even the simplest
- problem (not reducible to lower
) A dimensions), viz. the finiteness of
C(3,3,3,2), is still unsolved.

{ Another interesting problem is

the following. We proved that

L ~ C(3,3,1,2)>5 by indicating the

Fig. 7. construction of a family of type

(2,3,1,2) which is not 5-colorable.

Among families of type (3,3,1,2) which are not reducible to families of

type (2,3,1,2) situated in parallel planes, we were unable to find examp-

les showing C(3,3,1,2) > 5 (although we constructed such a family which

is not 4-colorable). Are all families of type (3,3,1,2) containing segments
in 3 independent directions 5-colorable ?

REFERENCES

1. A. Bielecki, Problem 56, Colloq. Math. 1 (1948), 333.
2. N. G. de Bruijn and P. Erdos, 4 colour problem for infinite graphs and a problem in the
theory of relations, Indag. Math. 13 (1951), 371-373.

INSTITUTE FOR ADVANCED STUDY, PRINCETON, N.J., U.8.A.



